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Chapter 1

Introduction

The field of strongly correlated systems is gradually flourishing and has become one

of the most important areas of Condensed Matter Physics for almost three decades.

This field first came into the limelight after the discovery of heavy-quasiparticle ex-

citations and superconductivity in materials like CeAl3 and CeCu2Si2, in a Fermi

liquid-like scenario [1,2]. Although, the idea of strong electron correlations that sup-

press the metallic character of materials prevailed long before their discovery. The

electron correlations are responsible for the metal to insulator transition and these

insulators were named as ‘Mott-Hubbard insulators’ according to the names of the

scientists N.F.Mott and J.Hubbard, who first pointed out this phenomenon [3, 4].

Another type of insulators known as charge transfer insulators were also discussed

based on the relative magnitudes of the Mott Hubbard and charge transfer gaps

(the details are discussed in the subsequent subsection). Moreover, the materials

discussed above, generally show antiferromagnetic ordering, the initial explanation

of which was given by Louis Néel, as early as in 1936 [5]. It was found that the order-

ing is lost above a critical temperature, henceforth named as the ‘Neel temperature’

for the corresponding antiferromagnets. The reason behind this antiferromagnetic
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alignment is the kinetic exchange, originating as a consequence of strong Coulomb

repulsion between the electrons. However, in those times, the primary focus was

on the transition metal oxides and the phase transition, as for example, the Verwey

transition in Fe3O4 [6]. Furthermore, the strong correlation leading to formation of

Wigner crystal and Heitler and London Theory for chemical bonding also came into

being [7].

Later on the real thrust for the growth of this field was provided by the discov-

ery of high temperature superconductivity in the cuprate materials like hole-doped

La2−xBaxCuO4 and La2−xSrxCuO4. Since its discovery, high temperature supercon-

ductivity has drawn the interest of many scientists. Until now many high temper-

ature superconductors have been found, yet the aim of reaching room temperature

superconductivity still works as a driving force for finding new materials with excep-

tionally high critical temperatures [8, 9]. Besides these experimental progresses, the

quest to know the bewildering mechanism behind pair formation in these supercon-

ductors has also led to many theoretical researches; however, many of these findings

deepened the mystery further.

For a long time, superconductivity itself remained as a challenging problem in the

field of Condensed Matter Physics and the efforts to understand this phenomena have

eluded many scientists working on it. The breakthrough came in 1957 when three

researchers viz. J.Bardeen, L.Cooper, J.R.Schrieffer came up with a microscopic

theory (very well known as the BCS Theory) that could successfully explain various

properties of conventional superconductors [10]. Around the same time, another mi-

croscopic theory was proposed by M.R.Schafroth, J.M.Blatt and S.T.Butler (SBB),

involving the evaluation of partition function using the quasi-chemical equilibrium

approach [11,13]. Motivated by the works of N.N.Bogoliubov and collaborators, they

suggested that the superconducting pairs are the Bosons and that the superconduct-
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ing state originates from the Bose Einstein condensation of the electron pairs [11,12].

This theory predicts the size of the localized pairs to be very small compared to the

separation between the pairs and the pairs could translate leading to a gap-less Bose-

Einstein excitations above the ground state, which is in contrast to the BCS pairing

theory. However, due to the complexity of their formulation, they could not carry

out the complete calculations and did not obtain the simplified BCS energy gap

equation and quasi-particle spectrum [14, 15]. Again, the destruction of the super-

conductivity was proved to be due the breaking of the electron pairs and not as an

effect of evaporation of pairs as a whole from the condensate, as was predicted by

the SBB Theory [16]. Furthermore, according to this theory, the specific heat was

supposed to exhibit a lambda-peak at the critical transition temperature, as seen at

the point of transition from normal to superfluid Helium [17, 18]. But experimental

results on conventional superconductors could not show this type of feature at the

point of transition from normal to superconducting phase [19].

Although the BCS Theory was immensely successful in deriving the supercon-

ducting gap equation and a relation between the superconducting gap and critical

temperature for certain materials, later on a few experimental results highlighted

that the material independent value of the ratio of superconducting gap and criti-

cal temperature was not always true [20]. The discrepancy with the experimental

results was primarily due to some inadequacies of the BCS Theory including the

effect of not incorporating the change in effective mass of the electrons in presence

of very strong electron-phonon coupling [21]. The renormalization of the electron

mass in presence of electron-phonon coupling as well as the retardation in electron-

electron effective interaction were was taken into consideration by G.M.Éliashberg

in 1961 [22]. Moreover, the BCS Theory, initially developed for the conventional

s-wave superconductors was later extended to take into account d-wave and p-wave
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superconductivity [23]. However, the pure electron-phonon interaction based mech-

anism was proved to be insufficient for properly describing the origin of pairing in

these systems [24–26]. In this scenario, different theories came into being for under-

standing the actual origin of pairing in various exotic superconductors, including the

high Tc cuprate superconductors. Among the high temperature superconductors, the

most well known ones are the cuprates, the superconductivity of which are mainly

governed by the Cu-O chains and planes. In this chapter, the Mott Hubbard and

Charge Transfer insulators, the BCS Theory for the conventional superconductors,

the detailed structure of the perovskite materials and the models used for describing

the strongly correlated materials, exhibiting high temperature superconductivity in

the optimal doping region, are discussed in some details.

1.1 Mott-Hubbard and Charge Transfer Insula-

tors

The strongly correlated solids can be classified into Mott Hubbard or charge transfer

conductors or insulators based on the relative magnitudes of Mott Hubbard gap ‘U’

and charge transfer gap ‘∆’. This classification can be very well understood from

the plot of Zaanen, Sawatzky and Allen (ZSA) [27]. The Fig.(1.1) shows the ZSA

plot:
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Figure 1.1: The phase diagram exhibiting of ZSA. The regions shown are :(A) Mott-
Hubbard insulators; (B) Charge-transfer semiconductors; (AB) Intermediate region
between A and B; (C) d-band metals;(D) p-type metals; (CD+C’D) Intermediate
Regions between C and D [27]

According to the Band Theory (BT), a solid is guaranteed to be a metal if the

valence and conduction bands overlap. However, BT neglects the inter-electronic

Coulomb repulsion U, which is the principal cause behind the insulating behaviour

in many compounds.

When the orbitals of the electrons in the valence band of solids overlap, the electrons

try to delocalize over the entire volume of the solids to minimize their kinetic energy.

In this case, there is a possibility for two delocalized electrons to come to the same

orbital and if the on-site Coulomb repulsion >> the band width (U>>w), then the

energy becomes very high and it exceeds the gain in kinetic energy. As a result,

the electrons get localized in a particular unit cell. Now, at half filling of the band,

exactly one electron sits on all the sites. In this situation, a gap opens up, equal in

magnitude to U and this gap separates the band into an upper and a lower Hubbard

sub-band. This type of insulators are known as the Mott Hubbard insulators [28].
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The other branch of solids, called the charge transfer solids are also important

in the context of transition metal oxides. This type of materials are characterized

by the transfer of electrons from closed shell anion to the cation, if U>> ∆. For

U> ∆, the gap is of a charge transfer (CT) type and even for U→ ∞, we can

get a metallic ground state ie., a CT or a p-band metal (since the charge transfer

takes place between the anion p-band and the cation d-band) if ∆ <(W+w)/2 and

when ∆ >(W+w)/2 the system behaves as a CT insulator. On the other hand,

when U<< ∆, one gets back into the Mott Hubbard regime, which can be further

classified into Mott Hubbard (MH) insulator for U>w and d-band metal (as the

electron transfer takes place only between the cation d-bands) for U<w [27]. Here

‘w’ and ‘W’ represents the band width of the cations and the anions respectively.

The energy for charge fluctuations are defined as [29]:

Udd
eff = E0(d

n−1)− E0(d
n) + E0(d

n+1)− E0(d
n) (1.1)

is the energy required to move a d electron from one transition metal ion to another,

and

∆eff = E0(d
n+1L)− E0(d

n) (1.2)

which represents the energy needed to move an anion p ligand electron, resulting in

a ligand hole (L), to a transition metal d state. Here E0 in each case is the lowest

energy state according to Hund’s rule.

Fig.(1.2) and (1.3) show the Energy vs. Density of states (DOS) plots for the CT

and MH solids respectively.
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Figure 1.2: Energy vs. DOS plot showing the d-band metals and MH insulators;
(i) The diagram in the left is for non-interacting electrons. The anion p-band is
separated from the transition metal d-band by the charge transfer gap ∆. The half-
filled d-band represents a d-band metal, (ii) In the right, the bands for interacting
electrons are shown. The interaction ‘U’ opens up a gap between the upper and
lower sub-bands and the system behaves as an insulator as U>w. As U< ∆, so
it a Mott Hubbard insulator [‘EF ’ represents the position of the Fermi energy, ‘w’
represents band width of cation d-band and ‘W’ represents the band width of the
anion p-band].
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Figure 1.3: Energy vs. DOS plot showing the d-band metals and MH insulators;
(i) The diagram in the left is for non-interacting electrons. The anion p-band and
the transition metal d-band overlaps representing a p-band metal ∆. The half-filled
d-band represents a band metal, (ii) In the right, the bands for interacting electrons
are shown. The interaction ‘U’ opens up a gap between the p and the d bands and
the system behaves as an insulator as ∆ >(W+w)/2. As ∆ <U, so it a Charge
Transfer insulator [‘EF ’ represents the position of the Fermi energy, ‘w’ represents
band width of cation d-band and ‘W’ represents the band width of the anion p-band].

1.2 BCS Theory

The theory put forward by Bardeen, Cooper and Schrieffer was the well acceptable

microscopic theory for conventional superconductors. The main challenge was the

formation of attractive pairing between two electrons in presence of a background

of positively charged ions. Though this theory was greatly successful in handling

the challenge for conventional superconductors, it could not satisfactorily describe

the mechanism of pair formation in the strongly correlated high Tc superconductors.

However, in this context, the discussions on the BCS Theory are necessary to get

an idea about the notion of pair formation in the superconductors, at least in the
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conventional cases.

Cooper showed that the Fermi sea is unstable with respect to the formation of

at least one quasi-bound pair, as long as the interaction is attractive, regardless of

how weak it is [13, 30]. The attraction is usually mediated by the electron-phonon

interaction and the formation of macroscopic number of Cooper pairs gives rise to

an energy gap. The principal aspects and the formulation of the theory are briefly

discussed below:

Let us consider the interaction between two electrons in k and k′ state as shown in

Fig(1.4):

Figure 1.4: Feynman diagram showing the phonon mediated interaction between two
electrons in k and k′ states scattering to (k-q) and (k′+q) states

The electrons in k and k′ states scatter to (k-q) and (k′+q) states respectively

due to an interaction mediated by an exchange of a phonon of momentum q. When

this interaction is attractive, one expects the pairs to condense in a real macroscopic

system until and unless an equilibrium point is reached [30].

For simplicity, one can first consider the zero momentum pairing case, where inter-

action takes place between two electrons in l and −l states.
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Then the matrix element of the potential Vkl is given as [13]:

Vkl = 〈k,−k|V |l,−l〉 (1.3)

where the electrons in l and −l states scatter to k and -k states respectively.

As already mentioned, this attractive interaction owes its origin to the electron-

phonon interaction, which was first accounted for in the framework of the ‘jellium

model’ [31–33]. A schematic diagram of the electron-phonon interaction is given in

Fig.(1.5).

Figure 1.5: Electron-phonon coupling, giving rise to the pair forming attractive
interaction between two electrons

According to the Jellium model, the solid is approximated as continuous fluid of

electrons and ions and the Brillouin Zone effects and finite ion-core size effects are

completely neglected. The interaction comes out to be [34]:

V (q, ω) =
4πe2

q2 + k2s
+

4πe2

q2 + k2s

ω2
q

ω2 − ω2
q

(1.4)
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The second term in eq.(1.2) originates from the phonon-mediated interaction and is

negative for ω < the phonon frequency ω(q). Although this model can not capture

the entire physics of realistic electronic solids, it gives an idea regarding the origin

of the attractive pairing interaction to start with.

The BCS pairing Hamiltonian is:

H =
∑
kσ

εknkσ +
∑
kl

VklC
+
k↑C

+
−k↓C−l↓Cl↑ (1.5)

In the original BCS formalism, Vkl is considered to be an attractive square potential

originating from the electron-phonon interaction as described above. The range of

the potential is in a shell of width ωc (cut-off frequency ∼ ωD) centred at the Fermi

surface [13]. Therefore, the range of the potential is taken as:

Vkl = −V for |εk − EF | 6 }ωc (1.6)

Vkl = 0 otherwise (1.7)

Now, in the presence of this kind of attractive interaction, BCS proposed the

ground state wave function [13,30]:

|ψ〉BCS =
∏

k=k1,...kM

(uk + vkC
+
k↑C

+
−k↓)|φ0〉 (1.8)

where ‘uk’ and ‘vk’ are the probability amplitudes of the state k being unoccupied and

occupied respectively. The quantities ‘uk’ and ‘vk’ can be determined variationally
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and the calculation brings out these probability amplitudes as [13]:

uk =

√
1

2
(1− ξk

Ek
) (1.9)

vk =

√
1

2
(1 +

ξk
Ek

) (1.10)

where ξk is the kinetic energy of a quasi-particle with respect to the Fermi energy

(ξk = εk − EF ) and Ek is the excitation energy of the quasi-particle given by [13]:

Ek = (∆2
k + ξ2k)

1
2 (1.11)

The ∆k in eq.(1.11) is the BCS energy gap for the kth state satisfying the condition

[13]:

∆k = ∆ for |ξk| 6 }ωD (1.12)

∆k = 0 otherwise (1.13)

where ωD is the Debye frequency. Using the above conditions and the expressions

for uk and vk, the expression for the BCS gap at T=0 can be derived as [13]:

∆(T = 0) =
}ωD

sinh( 1
N(0)V

)
(1.14)

where N(0) is the single spin electronic density of states at the Fermi level.

In the weak coupling limit i.e, N(0)V<<1, eq.(1.14) reduces to:

∆(T = 0) = 2}ωD exp(− 1

N(0)V
) (1.15)
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whereas in the strongly coupling limit i.e., N(0)V>>1,

∆(T = 0) = }ωDN(0)V (1.16)

However, in reality, in the very strong coupling case, the electronic states on the Fermi

surface get modified due to the strong electron-phonon interaction and Éliashberg’s

formalism is required to describe superconductivity [22].

At low temperatures, the weak coupling ∆(T) obeys the relation [13,30]:

∆(T )

∆(0)
≈ 1.74(1− T/Tc)

1
2 (1.17)

where Tc is the critical temperature of the superconductor.

It can be seen from eq.(1.16) that ∆ is non-vanishing for T<Tc. Thus, the conduction

electrons form genuine quasi-bound paired states below the critical temperature,

which is conventionally known as Cooper pairs.

1.3 High temperature superconductors

Superconductivity above 30K was discovered in 1986 by Bednorz and Muller in a

copper based material, La2−xBaxCuO4 [35]. YBa2Cu3O7−x was found within a year,

which exhibited a critical temperature of 93K, well above the boiling point of nitro-

gen. The superconductivity in these materials is mainly contributed by the Cu-O

planes and chains and the complexities in their structure are responsible for their

characteristic behaviour [35,36]. The charge density in these compounds can be ex-

ternally tuned by changes in their chemical composition. The Band Theory predicts

the undoped parental phase of the compounds(eg.La2CuO4 or YBa2Cu3O6) to be

metallic. However, for the very strong Coulomb repulsion, the electrons are localized
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and the compounds behave as insulators [35,36]. The additional charges introduced

as doping are mobile. The charges destroy the antiferromagnetic property of the

parental state and are responsible for the superconductivity. The phase diagram of

the high Tc superconductors is shown in Fig.(1.6).

Figure 1.6: Phase Diagram of hole-doped high Tc superconductors [37]

1.4 Structure of Cuprate Superconductors (Per-

ovskites)

The cuprate superconductors mainly belong to the crystallographic family of the

perovskites [38].

Perovskite are the ceramic materials having metallic elements combined with non-

metals (usually oxygen) in a particular atomic arrangement. The formula for the

perovskite is ABX3, where A,B are metallic cations (positive) and X is non-metallic

anion (negative) present in the ratio 1:1:3 [39]. The perovskites normally consists of
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cubes, in which the largest cation A lies in the centre, B cations occupy the eight

corner sites and the anions remain at the centre of all the twelve edges. Here, in

this section we would discuss the structure of two most important cuprate supercon-

ductors - doped La2CuO4 and YBa2Cu3O6. In the next three chapters we will also

show the comparison between the experimental results on these compounds with our

theoretical outcomes.

1.4.1 Structure of La2CuO4 (LCO)

The structure of La2CuO4 is primarily determined by X-Ray powder diffraction

method [40–42]. The experimental results reveal that LCO has square co-ordinate

CuO2 layers, which is the common characteristics of most of the cuprate supercon-

ductors. The CuO2 layers lie at the top, bottom and the middle of an unit cell.

The La-atoms are the largest cation ‘A’, Cu-atoms represent the ‘B’ cations and O

atoms are present at the centre of the edges [39]. In LCO, double layers of LaO sit

between two CuO2 layers. The structure also shows that the Cu ions are situated

in the centre of elongated oxygen octahedron, but the conductivity of LCO along

the c-axis is negligibly small. Overall La2CuO4 is insulating in the parental state,

however, replacement of La ions by Sr introduces conducting holes in the system.

These introduced holes are responsible for making doped La2−xSrxCuO4 (LSCO) an

important member in the family of high Tc superconductors. The structure of LSCO

is shown in Fig.(1.7):

15



Figure 1.7: (a) Structure of La2−xSrxCuO4 showing the position of the Cu, O, La/Sr
atoms; (b) antiferromagnetic arrangement of the Cu-atoms in the planes [43]

1.4.2 Structure of YBa2Cu3O6 (YBCO)

The undoped YBCO is insulating and has tetragonal unit cell, whereas the unit

cell of YBa2Cu3O6+x is orthorhombic [40]. One of the characteristic feature of

YBa2Cu3O6+x is the presence of Cu-O chains formed by the Cu1 and O4 atoms

along the b-axis (as shown in Fig.(5)). CuO2 planes are also present, similar to the

other cuprates. The O atoms in the Cu-chains are surrounded by four O atoms and

that in planes are at the centre of a pyramid formed by five O atoms [44–47]. The

Cu and O atoms in the CuO2 planes are slightly buckled up and the O atoms occupy

the edge sites. Two CuO2 planes are separated by Y atoms, which together forms a

block separated by Ba-O layers. The structure of a typical YBa2Cu3O6+x unit cell

is shown in Fig.(1.8) [48]:
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Figure 1.8: (a) Structure of YBa2Cu3O6+x highlighting the CuO2 planes and CuOx

chain layers [48]

1.5 The Hubbard Model for Strongly Correlated

Systems

The electronic correlation is the most important effect, that gives rise to many in-

teresting phenomena encompassing the many body Physics. According to the Band

Theory, a material is predicted to be a metal if the density of states at the Fermi

level is non-zero i.e, ρ(εF ) 6=0 and it is predicted to be an insulator if ρ(εF )=0 [49].

The condition of metallicity is easily satisfied in the alkali metals as well as alkali

earth metals i.e., Gr - I and Gr - II metals. However, the transition metal oxides

like CoO, CuO etc. are insulators which violates this rule by defying the predic-

tion of Band Theory for independent electrons. This violation in rule is attributed

to the very strong correlation effect between the electrons. For a long time, after

the discovery of the insulating property of transition metal oxides, there have been
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several attempts to develop a model including the large-U interaction between the

electrons. In this context, the Anderson’s superexchange mechanism was explained,

which is based on a Hubbard like Hamiltonian in the large-U half filled limit [50].

Finally the Hubbard Model was given the shape in 1963. This is believed to be the

simplest model for strongly correlated electron systems, which basically comprises of

the kinetic energy term and the electron-electron interaction term [4].

The one-band Hubbard Model is of the form [4]:

H = −t
∑
<j,l>

∑
σ

(C†jσClσ + C†lσCjσ) + U
∑
j

n̂j↑n̂j↓ (1.18)

The first term corresponds to the kinetic energy, with ‘t’ as the hopping amplitude

parameter and ‘U’ represents the onsite Coulomb repulsion. The Coulomb repulsion

between two electrons sharing the same orbital is defined as [49]:

U =

∫ −→
dr1

∫ −→
dr2|φ(−→r 1 −

−→
R j)|2

e2

|−→r 1 −−→r 2|
|φ(−→r 2 −

−→
R j)|2 (1.19)

where φ(−→r −
−→
R j) is the Wannier State and (−→r 1 −

−→
R j) and (−→r 2 −

−→
R j) are the

respective position co-ordinates of the electrons with respect to the ionic location for

the jth ion.

Normally from definition U is positive, which is the case for most of the solids that

are known. The Hubbard model is integrable only in 1D and the physical properties

can be determined exactly [51]. The first attempt to solve the one dimensional Hub-

bard model was made by Lieb and Wu, using the Bethe Ansatz [52]. The ground

state energy was calculated solving the Lieb Wu equations and the solution showed

that the ground state is metallic for U=0 in the half-filled limit, whereas, the Mott

insulator phase exists for U>0 at this filling [52]. Later the complicated Lieb Wu

equations were replaced by the simpler thermodynamic Bethe Ansatz (TBA) equa-
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tions and the entire thermodynamics of the one dimensional Hubbard model was

obtained [53–55].

The 2D Hubbard model is studied numerically using several techniques [56–61].

The model, in the weak coupling limit, is analyzed in the mean field approach [56].

The Renormalization Group Analysis of the of the model in the strong coupling limit,

using the first and second near neighbour hoppings identifies the antiferromagnetic

and d-wave superconducting instabilities as the leading instabilities [57]. Again, the

Monte Carlo simulations predict the system to be antiferromagnetically ordered in

the half filled limit at all values of coupling at T=0 [58,59]. However, in the slightly

less than half-filled case the long range order is seen to completely destroy much

earlier than that of the mean field approach [58]. The phase diagrams are also drawn

showing the spin density wave and the d-wave superconducting phases [57, 59,61].

1.6 Extended Hubbard Model

The model which I have discussed in the preceding section is the conventional Hub-

bard model introduced individually by Hubbard, Gutzwiller and Kanamori [4,62,63].

This model takes into account only interactions between electrons on a particular

site. It was done with a view that the entire physics, including the major magnetic

orderings would be same as from the complete forms of the Coulomb interaction

i.e., considering the interaction between electrons on other sites. But, it was later

understood that the description of charge orderings in the less than half- filled bands

requires the inter-site interactions [49]. The search for the mechanisms behind ferro-

magnetism and superconductivity in the model has necessitated the inclusion of the

neglected terms in the Hubbard model, which were already mentioned by Hubbard

himself in his several papers [4, 64].
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The general form of the model with on-site interactions and the interactions between

the neighbouring sites is given as: [65]:

H = −t
∑
<j,l>

∑
σ

(C†jσClσ + C†lσCjσ) + U
∑
j

n̂j↑n̂j↓ + V
∑
j

njnj+1 (1.20)

where ‘U’ is strength of the Coulomb interaction between electrons in the same site as

mentioned above and ‘V’ denotes the strength of the inter-site Coulomb interaction.

Initially extended Hubbard Model was studied only at the mean field level [66,

67]. However, the spin density to charge density wave transition in this model were

studied using Monte Carlo Simulation as early as in 1984 [68]. A few years later, the

complete thermodynamics was investigated using perturbative expansion technique

[69]. The phase diagrams of the model in one dimension at half-filled and quarter-

filled limits have also been presented in numerous papers [70–74]. Moreover, the

phase diagram for both attractive and repulsive Coulomb interaction has been drawn

using exact diagonalization and variational techniques, which clearly analyzes the

different properties of the ground state [75]. Afterwards, the quantum entanglement

in the extended Hubbard model was investigated to predict quantum phase transition

in fermionic systems [76].

1.7 t-J-like Models

1.7.1 t-J Model

The t-J model is the most important model for describing the strongly correlated

electrons in the high Tc superconductors. It is a progeny model derived from the

Hubbard model using a second order perturbation in the U>>W limit [77, 78]. A

schematic diagram of the origin of exchange interaction in t-J model is given below:
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Figure 1.9: Schematic diagram showing the origin of exchange interaction in the
strongly correlated systems

One of the characteristic features of this model is that it prevents the double

occupancy at a particular site due to very large Coulomb repulsion [4]. The effective

Hamiltonian is of the form [79–82]:

H t−J = −t
∑

<i,j>,σ

(Xσ,0
i X0,σ

j +Xσ,0
j X0,σ

i ) + J
∑
<i,j>

(Si.Sj −
1

4
ninj) (1.21)

where ‘t’ is the nearest-neighbour hopping amplitude connecting jth and ith site and

J= t2

U
is the exchange constant between the carriers on nearest neighbours; Xi and

Xj are the Hubbard operators which prevents the double occupancy on a particular

site. The Hubbard operators satisfy the commutation relation [83]:

[Xαβ
i , Xγδ

j ] = δij(δ
βγXαδ

i − δαδX
γβ
i ) (1.22)

The Hubbard operators are related to the Fermion operators [78]:

Xσ0
i = C†iσ(1− nσ), X2σ

i = σC†iσniσ, (1.23)

Xσσ
i = C†iσCiσ, X20

i = σC†iσC
†
iσ, (1.24)

X00
i = (1− ni↑)(1− ni↓), (1.25)

Xσσ
i = niσ(1− nσ), X22

i = ni↑ni↓ (1.26)
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The t-J model Hamiltonian can be written in terms of the Fermion creation and

annihilation operators, using the relations given in eqs.(1.21-1.24). The t-J model

Hamiltonian takes the form:

H t−J = −t
∑

<i,j>,σ

C†iσ(1− niσ)Cjσ(1− njσ) + J
∑
<i,j>

(Si.Sj −
1

4
ninj) (1.27)

(1-niσ) and (1-njσ) prevents double occupancies on the ith and jth sites respectively.

The high Tc superconductors can be well explained by the Hubbard model, provided

the very strong interaction limit U>> W is applied. Hence the t-J model Hamilto-

nian can be applied for these systems.

The parent compounds like La2CuO4 or YBa2Cu3O6 are Mott insulators in the half-

filled limit. Upon doping La2CuO4 with Sr or YBa2Cu3O6 with excess O, the hole

type charge carriers are introduced on both Cu and O-atoms [78]. The holes form the

Zhang-Rice singlet that are referred to in the t-J model Hamiltonian and are created

and destroyed by the Fermion creation and annihilation operators respectively [84].

The t-J model in 1D is exactly solvable using Bethe Ansatz at specific values of J/t,

but no ground state solution can be obtained for general values of J/t [79]. However,

the most important applicability of the t-J model lies in correctly determining the

characteristic behaviour of the 2D layered cuprates. Some machine learning meth-

ods like artificial neural networks and numerical techniques like exact diagonalization

of small clusters and Quantum Monte Carlo (QMC) have been used, although the

latter exhibited the well known Fermionic sign problem [85–87]. In spite of having

several problems and difficulties, these techniques have paved the way for consid-

erable progress in understanding the physics of the materials described by the t-J

model [78].

Now, this t-J model is valid only in the less than half filled-band limit. In the exactly
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half-filled case, when no holes are present, all the orbitals are filled with one electron.

In this situation, the hopping part in the Hamiltonian (eq.(1.10)) vanishes and one

can get back the well known antiferromagnetic Heisenberg Model [49]:

HJ = J
∑
<i,j>

(Si.Sj −
1

4
ninj) (1.28)

where antiferromagnetic exchange constant J>0 and ‘Si’, ‘Sj’ have the usual meaning

as mentioned before.

1.7.2 t1-t2-t3-J Model

The t1-t2-t3-J model is the extension of the well known t-J model, taking into account

the second and third nearest neighbour hopping [88]:

H = −t1
∑

<i,j>,σ

C†iσCjσ − t2
∑

<<i,j>>,σ

C†iσCjσ − t3
∑

<<<i,j>>>,σ

C†iσCjσ + J
∑

<i,j>,σ

Si.Sj

(1.29)

where ‘t1’, ‘t2’ and ‘t3’ are the first, second and third neighbour hopping amplitudes

respectively.

There are many reasons for considering the higher neighbour hoppings, the most

important of which is the changes in the topology of the Fermi surface near half-

filling [89–91]. In these cases the shape of the Fermi surface depends on the sign

of t2, whereas no sign dependence is seen when only the nearest neighbour ‘t’ is

considered [78]. The shape of true Fermi surface have been studied in the strong

correlation limit i.e., U>>W [90]. At half-filling, the nesting of the Fermi surface is

complete when t2=t3=0, confirming the existence of antiferromagnetic order in the
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system. However, in the over-doped regimes, the nesting is disrupted representing

the destruction of the antiferromagnetic order [90]. This necessitates the inclusion

of higher neighbour hopping terms in the higher doping regions. The experimental

studies using angle resolved photo emission spectroscopy (ARPES) also suggests the

inclusion of higher neighbour hopping terms in the high Tc superconductors [92,93].

The sign of t2 depends on the type of carrier doped in the system i.e, t2 is negative

for hole type carriers and positive for electron carriers [94]. Moreover, the hopping

between the second nearest neighbour site takes place between the same sub-lattice

of a Neel antiferromagnet, so that the magnetic order is not violated [95].

The t1-t2-t3-J model studied numerically using exact diagonalization technique shows

that a gap opens up for 10% doping of holes around k=(π,0), however, for electron

doping, the gap opens around k=(π/2,π/2) and persists upto 20% doping concentra-

tion [88]. Among the other numerical techniques, Slave boson approach is important,

the result of which get very good support from the ARPES results on electron-doped

cuprates [96]. Furthermore, QMC simulations for U∼W have shown that the antifer-

romagnetic order for the systems with t2 < 0 decay faster than that of the systems

with only nearest neighbour ‘t’ [97]. This is due to the fact that the hopping to

the nearest neighbour induces an exchange interaction J∼t2/U between the sites,

whereas the hopping to the next nearest neighbour induces an interaction J′ (de-

pending on the model parameters) between the next nearest neighbour sites. In the

moderate correlation limit U∼W, the antiferromagnetic exchange between the next

nearest neighbour sites thus leads to the frustration in the model that destroys the

Neel order [97]. In contrast to this, for the strong correlation limit, the mean field

approximation for the effective Hamiltonian emerging in the slave-boson representa-

tion proves that the antiferromagnetic Neel state in the t-J model is unstable with

respect to the formation of incommensurate spiral phases [98]. However, if the higher

24



neighbour hopping terms are included, the Neel state becomes stable in the very low

doping concentration [98]. In spite of having several views and results about the na-

ture of spin correlations in the strong as well as in the weakly correlated phases, the

actual magnetic behaviour in these phases and the location of the phase boundaries

require further investigation and study.

1.8 Gutzwiller state for strongly correlated elec-

trons

M.C.Gutzwiller formulated a wave function for handling the ground state of the

correlated electrons in the Hubbard model [62]. He started from a filled Fermi sea

state with non-interacting electrons |FS> and then introduced the correlation factor

for taking into account the electron interactions [62].

|ψG〉 =
∏
l

(1− αn̂l↑n̂l↓)|FS〉 (1.30)

where |FS> is the Fermi sea ground state and ‘α’ is the variational parameter which

decides the amplitude for the on-site fermionic double occupancies in the system.

Now writing the Fermi sea ground state in terms of fermion creation operators:

|ψG〉 =
∏
l

(1− αn̂l↑n̂l↓)
kF∏
kσ

∑
ij

C†iσC
†
j−σe

i(−→ri−−→rj ).
−→
k |vac〉 (1.31)

|vac〉 being the vacuum state (having fermionic occupation number equal to zero

at all sites). The symbols i, j and l denote the lattice sites and k represents the

wave vector for the fermion (existing hole), bounded by kF (Fermi wave vector) from

above. The variational parameter α is determined by minimizing the expression for
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energy E; where E is the energy expectation value in the Gutzwiller state itself. The

parameter α=1 represents very strong correlation i.e., when all the doubly occupied

states in the system are projected out. In the absence of correlation or in the very

weakly correlated case (α=0), one can get back the Fermi sea ground state (see

eq.(1.30)) [62]; α assumes the values from 0 to 1 in the intermediate correlation

regions.

Using this Gutzwiller state |ψG〉 the energy expectation value can be calculated as:

E = 〈ψG|H|ψG〉/〈ψG|ψG〉 (1.32)

where 〈ψG|ψG〉 is the normalization for the Gutzwiller state.

Fot t-J model, the expectation values of the kinetic energy and exchange energy

part are derived separately as:

T = 〈ψG|Ht|ψG〉/〈ψG|ψG〉 (1.33)

and EJ = 〈ψG|HJ |ψG〉/〈ψG|ψG〉 (1.34)

where ‘T’ and ‘EJ ’ are the expectation values of the kinetic energy part Ht and ex-

change energy part HJ of the t-J Hamiltonian respectively (see eq.(19))

This idea was previously put forward by Himeda and Ogata in a different way [99].

They renormalized the expectation values by comparing the statistical weighting fac-

tors in the wave functions with and without projection [100, 101]. As a result, the

parameters t and J are renormalized to gtt and gsJ [102]. This result is compared

with the variational Monte Carlo (VMC) results and it gives a proper estimate of the

variational energy of the pure d-wave superconducting state [100, 102]. However it
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was shown that there is no region in the phase diagram where the antiferromagnetic

state is stabilized [100]. This contradicts with the VMC results. To solve this puzzle,

they investigated the Variational Monte Carlo data and found that the Gutzwiller

approximation has to be modified in the presence of long range antiferromagnetic

correlations in the system [99]. Based on these observations, they extended the

Gutzwiller approximation and derived an analytic formalism for the renormalization

factors which reproduces the variational Monte Carlo results. They showed that it is

important to take into account the longer range correlations for the weighting factors,

in contrast to the previous approximation where only the site-diagonal expectation

are considered. They introduced the effect of strong correlation only in the renor-

malization factors of hopping and effective exchange constant. The effective values

are given by [103]:

teff = gtt Jeff = gsJ (1.35)

where gt and gs are the Gutzwiller factors calculated from variational energy calcu-

lation by Ogawa et al. [103].

The Gutzwiller constants gt and gs have been derived [99]:

gt =
2δ(1− δ)

(1− δ2 + 4m2)
gs =

4(1− δ)2

(1− δ2 + 4m2)2
(1.36)

where ‘m’ is the expectation value of antiferromagnetic order parameter denoting the

staggered magnetization in antiferromagnetic state and ‘δ’ is the doping concentra-

tion. The vanishing of gs and hence Jeff at δ=1 is evident from the above expression

for gs. m is a doping dependent quantity (m=m(δ)) upto δ=0.1 and m→0 approxi-

mately after 10% doping concentration.

Himeda and Ogata also calculated the Gutzwiller factors using variational Monte
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Carlo results. The dependence of gs on the staggered magnetization m for different

values of ∆ (variational parameter) is given as (Fig.(1.10)) [99]:

Figure 1.10: m dependence of gs with fixing ∆=0.02,0.18.Sizes are 8x8(open circles),
10x10 (filled circles), 12x12 (open squares) and 14x14 (filled squares) [99].

The important feature seen in the plot is that the z component of the enhancement

factor gzs has a maxima at m ∼0.15. On the other hand, the XY component does not

have this feature and decreases monotonically as m increases. The size dependence

of the maxima are found but the qualitative features do not change for almost all

the values of ∆. This enhancement of gzs near m∼0.15 is not expected in simple

Gutzwiller approximation. This enhancement stabilizes the antiferromagnetic order,

though the error of introducing the effect of no double occupancy only within the

Gutzwiller factors, is included in it. The maximum exists for all values of doping

concentrations, however the enhancement becomes weaker as the number of holes is

increased [99].
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1.9 Outline of the thesis

The thesis is arranged in the following way:

In Chapter 2, I have formulated a non-perturbative approach for deriving the ef-

fective exchange interaction between the itinerant spin degrees of freedom in doped

two dimensional antiferromagnets. The approach is based on the calculation of gen-

eralized spin stiffness constant (spin asymmetric quantity) for the nearest neigh-

bour t-J model. The results are compared with experimental results on layers of

La2−xSrxCuO4 and the different characteristic features and magnetic behaviours of

the strongly correlated antiferromagnetic systems have been studied as a function of

doping concentration.

In chapter 3, the generalized spin stiffness constant for 1D doped antiferromagnets

are derived. The results are compared with experimentally extracted results from

the chains of YBa2Cu3O6+x. A novel prediction is given regarding the emergence

of a ferromagnetic-like coupling between the itinerant spins, after the decay of the

original antiferromagnetic ordering in the undoped phase at zero temperature.

In the next chapter, I have given a detailed derivation of the generalized charge

stiffness constant (spin symmetric quantity) for 2D and 1D antiferromagnets. The

strongly correlated under-doped and the weakly correlated over-doped regimes are

separately studied using the nearest neighbour t-J model and t1-t2-t3-J model respec-

tively. The comparison with other theoretical results established the equivalence of

charge stiffness constant and the effective Drude weight. The relation between charge

stiffness and effective Coulomb interaction at different doping concentrations is also

established, based on the comparison with experimental results on La2−xSrxCuO4.

Moreover, the possibility of charge density wave formation is analyzed in quite detail.

In the last and the concluding chapter, I have given a brief summary of all the chap-

ters in a nutshell and given the necessary concluding remarks regarding the chapters.
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Chapter 2

Study of interactions between spin degrees
of freedom in two-dimensional doped quan-
tum antiferromagnets

2.1 Introduction

In the preceding chapter, I have discussed about the cuprate superconductors like

La2CuO4 or YBa2Cu3O6, which are antiferromagnetic insulators in the parental un-

doped phase [104, 105]. Now, these relevant antiferromagnetic parental compounds

like La2CuO4 or YBa2Cu3O6 can be explained with the help of nearest neighbour

quantum Heisenberg Hamiltonian. However, this long range Neel ordering is lost

in cuprates at temperature above the corresponding Neel temperatures and these

materials can be treated as purely two dimensional systems in this regime. In view

of this, the doped compounds (like La2−xSrxCuO4 or YBa2Cu3O6+x) are well under-

stood with the help of two dimensional t-J model derived from strongly correlated

Hubbard model, as has been detailed in the previous chapter.

The effect of the inclusion of higher neighbour interaction in the t-J has con-

siderable importance in describing the pair formation in d-wave superconducting

state [106]. Recently renormalized mean field (RMF) t-J model has been used to
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study the possibility of d-wave pairing in high temperature superconductors, which

is able to produce results comparable to the variational Monte Carlo results [107].

In addition to it, two dimensional t-J model on square lattice based on infinite

projected-entangled pair states, has been used to study the occurrences of stripes

and the competition of uniform d-wave states versus striped states [108, 109]. An-

other issue that has been much talked about till today is the frustration in the quan-

tum antiferromagnets where the most studied example is the J1-J2 Heisenberg model

for spin 1/2 systems (where J1 and J2 are the nearest and next-nearest-neighbour

exchange constants respectively). Sometimes even the third nearest-neighbour ex-

change interaction J3 is taken into account and phase diagram of J1-J2-J3 Heisenberg

model, bearing the signature of possible quantum phase transitions, has been stud-

ied [110, 111]. The spin fluctuations in doped quantum antiferromagnets is studied

based on the extended t-J model taking into account the next-nerarest-neighbour

hopping term (t′) [89]. Moreover, the t-J1-J2 model is formulated for investigating

the orbital-selective superconducting pairing, gap anisotropy and detailed magnetic

behavior of the iron based superconductors like iron pnictides having co-existing lo-

calized and itinerant character [112,113].

Here, the magnetic properties of two dimensional doped strongly correlated quan-

tum antiferromagnets are investigated using the nearest-neighbour t-J model. This

model involves mobile holes, which has a vast applicability in the layered cuprate

systems [105,114]. The presence of the mobile holes in cuprates have also been estab-

lished by many experiments on the cuprate layers. The results are consistent with

the Monte Carlo results, that showed the exponential decay of correlation length

and then a power law decay with the increase in doping concentration [115]. Vajk

et al. studied the magnetometry of Zn or Mg doped La2CuO4 and noted the low-

temperature tetragonal (LTT) structural phase transition above 10% doping concen-

31



tration. Above 25% doping the Neel ordering occurs in the LTT phase and persists

upto 40.7% site dilution [115].

Some of the theoretical techniques based on t-J and t1-t2-t3-J model have been al-

ready discussed in the last chapter. Besides these, some other important approaches

related to the different aspects of the t-J models are mentioned here. Mori’s pro-

jection is a powerful technique that establishes a connection between susceptibility

and self-energy using the Green’s function in relaxation-function theory. The study

of two dimensional t-J model using the Mori’s projection technique was done in the

doping range 0 6 δ 6 0.16 and the obtained homogeneous solution negates the pos-

sibility of stripes formation or phase separation in this doping region [116]. Again,

the Mori’s projection technique is used to investigate the hole and spin excitation

spectrum in the background of t-J model [117]. More complicated systems like oppo-

sitely doped layers of Bismuth are insulators of Mott-Hubbard type [118]. These kind

of systems form inter-layer excitons and hence it is difficult to find any single layer

analogue of these systems. The memory function method has also been used to find

the charge dynamics and optical and d.c. conductivity in the t-J model [119–121].

Later on, the electron spectrum and superconductive pairing in the t-J model in a

paramagnetic state is studied using the projection technique of the two-time Green’s

function, consistent with the Eliashberg equations [122]. Among the other methods

extensively used are the variational Monte Carlo and the Gutzwiller wave function

approach minimizing the effective single particle Hamiltonian and structure of gap

function [123, 124]. The diagrammatic expansion of Gutzwiller wave function has

shown the possibility of superconducting pairing for U/t>3 and for δ 60.32 [123].

But all the above variational calculations involve only the lowest order contribu-

tion in the couplings ‘t’ and ‘J’. The calculation of dynamical spin susceptibility

for the study of spin dynamics in the t-J model was also done considering only
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the lowest-order approximation, which has been later proved to be insufficient in

correctly determining the dynamical spin susceptibility [120, 125]. The self-energy

calculation for the strongly correlated t-J model involving the Mori-type technique

in two-time thermodynamic Green’s function takes into account the spin excitation

which is proportional to the square of hopping amplitude (t2) and the imaginary part

of self-energy Σ′′ ∝ t4 [126–128]. The consideration of the higher order terms can

correctly predict the disappearance of long-range ordering with increase in doping

which is in general agreement with the results presented in this chapter . In [127],

the critical value of doping concentration (δc), above which the long range order van-

ishes, is also derived for different values of J/t ratio and δc is found to be proportional

to J/t. However, none of the above results were sufficiently conclusive in predicting

the detailed magnetic behaviour of strongly correlated itinerant antiferromagnets.

Here comes the importance of a different kind approach for rigorously determining

the magnetic behaviour of correlated itinerant systems. In this note a first principle

quantum mechnical method is developed for deriving generalized spin stiffness con-

stant corresponding to the 2D t-J model. Although the relevance and usefulness of

the t-J model for describing the itinerant doped antiferromagnets have been proved

long ago, but the model is applicable only in the low doping region. The heavily

doped region in reality shows substantial weakening of the correlation between the

charge carriers and may not be governed by the t-J model in real systems [129].

The formalism used here for deriving the generalized spin stiffness constant of

strongly correlated t-J model is based on an idea originally proposed by Kohn and

Thouless [130]. In this calculation, the variational parameter in the Gutzwiller state

‘α’ is taken to be unity for projecting out all the doubly occupied sites (NDOC con-

dition applied). The plot of stiffness constant as a function of doping concentration

shows substantial weakening of the spin-spin couplings, thus predicting the quantum
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melting of the long range antiferromagnetic order. This result also gets good support

from earlier theoretical and experimental results [99, 132,133].

The temperature dependence of the spin-spin correlation length in two dimensions

has been derived analytically by Chakravarty, Halperin and Nelson (CHN) for pure

two-dimensional nearest neighbor Quantum Heisenberg Antiferromagnet correspond-

ing to undoped parent compound (La2CuO4). The calculations have been done using

Renormalization Group technique, starting from a field theoretic action [134]. The

calculation predicts the decrease of correlation length as temperature increases. This

result has been modified later to take into account the large excess of charge carriers

in real materials like laboratory-grown La2CuO4 [135]. Although the formulation

of CHN was originally developed for pure (undoped) cuprates, similar results were

obtained even in the case of very lightly doped cuprates [136]. This was demon-

strated by Manousakis for ‘static holes’, which is a crude assumption in the sense

that completely static holes are impossible in the present scenario. In the very low

doping region however, the holes with heavier masses are rather constrained within

a small spatial region around the dopant atoms [136, 137]. This situation may be

regarded as that of nearly static holes. Moreover, in such a low doping region the

hopping amplitude is negligibly small.

The neutron scattering experimental results of Thurston et al. show the fall of

2-dimensional correlation length (ξ2D) with increase in doping concentration (x) of

La2−xSrxCuO4 [105]. On the other hand, the numerical results for spin stiffness con-

stant qualitatively and even quantitatively describe the nature of its decrease with

increase in doping starting from the half-filled band limit and interestingly is quite

similar to the behaviour of the result obtained from the above experimental work.

This carries a strong hint that spin stiffness constant may very well play the role of

an effective exchange constant in doped antiferromagnets. In addition, the analyti-
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cal calculations and nature of the calculated spin stiffness constant are in qualitative

agreement with the Quantum Monte Carlo results, which also predicts the reduction

of antiferromagnetic ordering with the increase in doping [105,136].

As discussed in the previous chapter, a slightly different type of concept and esti-

mate for effective exchange constant in an effective ideal Fermi-sea like background

was introduced by Himeda and Ogata [99]. Here a detailed comparison between their

results and the results obtained using the approach mentioned above are presented.

The vanishing of spin stiffness constant as δ →1 agrees with the results of Himeda

and Ogata; however their calculations did not produce any plausible signature of

phase transition which comes as a possible outcome of the present analytical and

numerical calculations.

Here, once again it should be made clear that the most important feature of the

doped magnetic systems is the presence of the strongly correlated itinerant non Fermi

liquid-like conducting phase around the optimal doping region. The previous re-

searches for determining the magnetic interactions done using the density-functional

theory, were for completely localized spins [138–140]. There were a few other at-

tempts to study the properties of conventional itinerant magnetic systems using

coherent-potential, where local exchange-correlation approximation was used in the

band calculations [141]. Later Antropov calculated the effective exchange coupling

of the itinerant systems using a combination of ‘inverse susceptibility’ approach and

multiple-scattering theory [142, 143]. However, these calculations are valid in the

weak correlation limit. Henceforth, the rigorous analytical and numerical calcula-

tions presented here provide a simple and comprehensive way for determination of

effective exchange coupling and description of the magnetic correlations of strongly

correlated semi-itinerant systems both qualitatively and quantitatively.

Thus, one of the major aims to be accomplished in this chapter would be to
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theoretically determine and establish a more quantitative relation between gener-

alized spin stiffness constant and effective exchange constant corresponding to a

doped strongly correlated quantum antiferromagnet in 2-dimension, described by

the nearest-neighbour t-J model. In the subsequent sections, the problem is for-

mulated and solved analytically. The results of generalized spin stiffness constant

are plotted as a function of doping concentration and then compared with previous

experimental and theoretical results.

2.2 Formulation and Calculation

2.2.1 nearest neighbour t-J model

The Hamiltonian of the strongly correlated nearest neighbour t-J model is given

by [146]:

Ht−J = Ht +HJ (2.1)

where

Ht =
∑

<i,j>,σ

tijX
σ0
i X

0σ
j (2.2)

and

HJ =
∑
<i,j>

{Jij(Si.Sj − (
1

4
)ninj)} (2.3)

(with Jij > 0) where tij is the nearest-neighbour hopping amplitude connecting

jth and ith site and Jij is the exchange constant between the carriers on nearest

neighbours; X’s are the Hubbard operators, satisfying the appropriate commutation
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relations and the usual Hubbard algebra [132]. For nearest neighbour hopping and

exchange interaction, tij=t and Jij=J are taken. It may be recalled that the quan-

tities ‘t’ and ‘J’ are considered independent.

The generalized spin stiffness constant D̃spin is defined as [132],

D̃spin = limφ→0(
1

2
)
δ2E

δφ2
(2.4)

where E(φ) is the total ground state energy in the presence of staggered Peierl’s

phase (resembling a magnetic flux) φσ with σ =↑ or ↓, arising from an applied vector

potential A(r), such that

φ↓ = φ↑ = φ (2.5)

The hopping amplitude tij for a fermion with spin σ is modified to tije
iφσ , only if

the vector potential has a component along the direction of hopping. The factor of

( e
}c) in the phase φ is included in the final expression of D̃spin with proper scaling.

The total spin stiffness constant D̃spin , abbreviated as ‘D̃s’, may be written as,

D̃s = D̃t
s + D̃J

s (2.6)

where D̃t
s and D̃J

s are the contributions from the ‘t’ term and the ‘J’ term respectively.

They are defined as

D̃t
s = limφ→0(

1

2
)
δ2T

δφ2
(2.7)
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and

D̃J
s = limφ→0(

1

2
)
δ2EJ
δφ2

= limφ→0(
1

2
)
δ2Esf

J

δφ2
(2.8)

where T is the kinetic energy contribution, EJ is the total exchange energy and

Esf
J is the spin flip part of the exchange energy, which again are the ground state

expectation values of the corresponding parts of the Hamiltonian. It may be pointed

out that the direct part of the exchange energy term does not contribute to D̃J
s [132].

Furthermore, it may be noted that D̃t
s and D̃J

s both have the dimension of energy

since φ is a dimensionless quantity.

In calculating E, avoiding the rather complicated Hubbard algebra, the Gutzwiller

state is used with strictly NDOC imposed upon it [62]. The very general form of the

Gutzwiller state is given by [62]:

|ψG〉 =
∏
l

(1− αn̂l↑n̂l↓)|FS〉 (2.9)

where |FS> is the Fermi sea ground state and α is the variational parameter deter-

mined by minimizing the expression for E in the general case. In the case of NDOC

however, α is taken as 1 without going into any variational scheme to determine ‘α’.

As stated earlier, this is in the spirit of the very strong correlation situation assumed

to persist even in the doped phase, with effective on-site Coulomb repulsion much

larger than the band-width, leading to strict avoidance of double occupancy on each

site.

Now expressing the Fermi sea ground state |FS> in terms of fermion creation
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operators, Eq.(2.9) takes the following form : -

|ψG〉 =
∏
l

(1− n̂l↑n̂l↓)
kF∏
kσ

∑
ij

C†iσC
†
j−σe

i(−→ri−−→rj ).
−→
k |vac〉 (2.10)

where |vac > is the vacuum state (having fermionic occupation number equal to zero

at all sites) and the normalization constant is omitted for the time being which will

be included later in the calculation for the energy eigen values. The symbols i, j and l

all denote the lattice sites and k represents the wave vector for the fermion, bounded

by kF (Fermi wave vector) from above [132]. Here kF is defined corresponding to

the sea of holes which are considered as the existing carriers in the presence of

doping(vacancies). It may be recalled that the insulating phase corresponds to one

hole per site with the holes being immobile. The Fermi wave vector for the two

dimensional systems,

kF =
√

2πn/a (2.11)

where ‘n’ is the concentration of existing fermionic carriers (holes) present in the

doped system and ‘a’ is the lattice spacing. ‘n’ is related to the doping (vacancy)

concentration ‘δ’ (doping introduces vacancies in the system by removing carriers)

as, n=1-δ. Thus, kF gets related to δ as

kF =
√

2π(1− δ)/a (2.12)

The Eq. (2.3) can now be rewritten as:

HJ =
∑
〈i,j〉

JijH
′
J (2.13)
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where,

H ′J =
−→
Si .
−→
Sj −

1

4
ninj (2.14)

Again,

Esf
J = (

4t2effcos(2φ)

Veff
)
NDOC〈ψG|H ′J |ψG〉NDOC
NDOC〈ψG|ψG〉NDOC

(2.15)

where NDOC〈ψG|ψG〉NDOC is the normalization for the Gutzwiller state; teff is the ef-

fective nearest neighbour hopping amplitude and Veff is the effective on-site Coulomb

barrier potential in the doped phase for infinitesimal doping ie., δ →0 within the ef-

fective one band scenario [132]. Thus one can model the initial J (Jbare or J(δ) with

δ →0) as 4t2eff/Veff as considered in the t-J model and estimate the initial t/J ratio

(in the limit δ →0) as Veff/4teff [132].

Carrying out detailed and more rigorous calculation after normalizing the Gutzwiller

state and considering only the contribution from the nearest neighbour interaction,

the exchange energy contribution comes as (the major steps of the calculation are

shown in Appendix A):

NDOC〈ψG|H ′J |ψG〉NDOC
NDOC〈ψG|ψG〉NDOC

=

kF∏
k

2(1− δ)2 (2.16)

The square on (1-δ) is the consequence of the exchange interaction operating only

between the occupied sites. Making use of equation (2.8) and by taking derivative of

equation (2.15) twice the exchange part of the spin stiffness constant can be obtained

as,

D̃J
s = −4J

kF∏
k

2(1− δ)2 (2.17)
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From the earlier calculation described in [132], the kinetic energy contribution of the

Fermionic system at zero temperature can be found from the following equation,

T =
NDOC〈ψG|Ht|ψG〉NDOC
NDOC〈ψG|ψG〉NDOC

(2.18)

The above quantity is evaluated in the presence of staggered phase φ(σ) (staggered

phase corresponding to up or down spins) making use of the orthogonality of the

independent states and the result comes out to be (the major steps of the calculation

are shown in Appendix(B)):

T (φ 6= 0) = (t)[

kF∏
k,σ

∑
σ

4cos(ka)(1− δ)2cos(φσ)−Nl

kF∏
k,σ

∑
σ

4cos(ka)cos(φσ)/N2]

(2.19)

Here equation (2.5) is used for φσ corresponding to up and down spin respectively;

‘Nl’ is the expectation value of the number operator corresponding to the total num-

ber of lattice sites singly occupied by spins corresponding to the holes and ‘N’ is the

total number of sites.

Thus,

Nl = N(1− δ) (2.20)

For 2D lattice, the vector potential A(r) is assumed to be applied along the x direction

and making use of equations (2.7) and (2.19), one can get the expression for the

kinetic part of the spin stiffness constant as:

D̃t
s = (−t)[

kF∏
k,σ

4cos(kxa)(1− δ)2 −Nl

kF∏
k,σ

4cos(kxa)/N2] (2.21)
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The second term in equation (2.21) is physically important since it signifies the

complete projecting out of double occupancy in the occupied sites Nl. The increase

in doping concentration ‘δ’ decreases the number of occupied sites, thus decreasing

the probability of double occupancy.

The vanishing of the total spin stiffness constant D̃s implies the loss of rigidity

(rigidity arising from the antiferromagnetic coupling) of the spins of the carriers

(holes) in the doped phase.

Again the vanishing of D̃t
s can arise from the vanishing of cos(kxa) at kx=π/2 and

for the whole set of values of kx (0≤| kx |≤ kF ), at least one value should satisfy

the above relation. Hence the boundary condition for the vanishing of D̃t
s should be

determined by kF=π/2. Thus from equation (2.11) and (2.12),

kF =
√

2π(1− δ)/a =
√

2πn/a = π/2 (2.22)

This condition leads to,

n ≥ 0.39 (2.23)

i.e., δ = (1− n) ≤ 0.61 (2.24)

The above inequality is the same as was obtained earlier [132]. So for doping con-

centration less than 0.61, D̃t
s goes to zero. Therefore the region below 61% doping

is entirely governed by spin stiffness from the exchange part D̃J
s . Again D̃J

s vanishes

only when δ →1 ie, for 100% doping and for δ →1, the concentration of hole car-

riers (n) vanishes resulting in the vanishing of kF and D̃t
s as well. Hence the total

spin stiffness constant falls with increasing doping concentration and exactly goes to

zero for δ=1. The detailed numerical results elaborated later show that the stiffness

constant practically vanishes at a much lower value of doping concentration, but a
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negligibly small value prevails and it theoretically tends to zero as δ →1. This result

is in quantitative agreement with that of Himeda and Ogata that antiferromagnetic

correlation prevails upto 100% doping [99].

Let me now come back to the conjecture involving the relation between the

spin stiffness constant and the effective antiferromagnetic exchange coupling between

mobile holes in the doped phase, as stated earlier. In order to test this conjecture,

total spin stiffness constant is first of all scaled down by the effective number of

pair of holes, NlC2 , where Nl has been defined earlier. This makes the comparison

between the spin stiffness constant and the antiferromagnetic exchange constant

more meaningful and transparent in the background of a semi itinerant magnetic

system produced by doping. Moreover, D̃s shows a very drastic fall with very small

increase of δ and in contrast to it, the scaled stiffness constant shows a comparatively

moderate fall with the increase of δ, which is much more alike to the plot obtained

from the combined results of experiments and Monte Carlo calculations. This result

is verified for all the lattice sizes including the 200x200 lattice, the largest lattice size

that could be handle here. Thus the total spin stiffness constant corresponding to a

single pair of mobile holes to be denoted as ‘D̃s’ is given as:

Ds = (D̃J
s + D̃t

s)/
NlC2 (2.25)

This new quantity Ds is then calculated from the earlier obtained results for D̃s

with parameters appropriate to La2−xSrxCuO4 for different lattice sizes for enumer-

ation and is plotted against doping concentration (δ). The theoretical graph is then

compared with the experimental results in combination with those from other theo-

retical and computational techniques, as will be discussed in the next section.
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2.3 Calculational Results and Comparison with

Phenomenology and other Theoretical

Approaches

Let us first of all review the relevant experimental and other theoretical and com-

putational results for this problem. Neutron scattering studies have been carried

out on La2−xSrxCuO4 samples at different doping concentrations. The results reveal

the presence of finite intraplane magnetic correlation in 2-dimension above it’s Neel

temperature (TN=190K) [105].

Above TN , the long range interplane correlation is lost and 2-dimensional corre-

lation length in pure La2CuO4 is ∼ 200Å at 300 K. But in this temperature range

the planes are still at low temperature since T<< intraplanar J.

The 2D antiferromagnetic correlation length, ξ2D , has been measured in double-axis

(energy integrating) experiments on a number of doped samples. It was found that

ξ2D is approximately independent of temperature, but it strongly depends on doping

concentration [105] (see Fig.(2.1)).

Figure 2.1: Magnetic correlation length vs. doping concentration ‘δ’ of
La2−xSrxCuO4
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This purely experimental plot gives the relation between 2-dimensional correla-

tion length and doping concentration. However to extract the dependence of ef-

fective exchange constant on doping concentration, the Monte Carlo results for 2-

dimensional Quantum Heisenberg Antiferromagnetic Model (2D QHAFM) is used,

as will be discussed below. It must however be stressed that this combined semi-

phenomenological scheme is only to provide a link between the results from rigorous

theoretical approach and the experimental situation.

CHN calculated the temperature dependence of the magnetic correlation length

of the spin 1/2 Heisenberg antiferromagnet corresponding to pure La2CuO4 using

renormalization group analysis of quantum non-linear σ model (QNLσM).

They obtained for T→0 [134]:

ξ2D = Cξ exp[
2πρs
kBT

] (2.26)

where ξ2D is the 2-dimensional antiferromagnetic correlation length and 2πρs (=1.25J

for undoped state corresponding to half-filled band) is the well known spin wave stiff-

ness constant which is proportional to the bare nearest neighbour antiferromagnetic

exchange constant ‘J’. But, the significance of the derived generalized spin stiffness

constant for the doped Heisenberg antiferromagnet is quite different from the spin

wave stiffness constant defined above. Hence it is apprehended that the spin wave

stiffness constant, which is also proportional to Jbare, should be different in magni-

tude from the doping dependent generalized spin stiffness constant derived by us.

Moreover, the applicability of the t-J model is restricted to slightly less than half-

filled band limit in the low doping side. So calculations are not possible at exactly

δ=0 and thus, in this formalism all the calculations are restricted to δ →0 limit.

Again Quantum Monte Carlo (QMC) studies have been performed on 2-dimensional

Heisenberg antiferromagnets by Manousakis for very low doping at T→0. The holes

45



in such a low doping limit are considered to be almost localized and the increase

in doping enhances the itinerancy in the system. This character of doping is also

experimentally observed in the layers of Sr doped La2CuO4 [147]. The numerical

results of Manousakis in this ‘nearly static hole regime’ are fitted quite well with a

function of exponential form, as in equation (2.26). The best fit is given by [136]:

ξ2D = (
0.276a√
(1− δ)

)exp[
1.25J

T
] (2.27)

where a=3.77Ao is the lattice constant for La2CuO4 and 0.276a is the prefactor

for pure 2-dimensional Heisenberg antiferromagnet with ‘J’ appearing in the above

equation to be regarded as ‘Jeff (δ)’ [148].

On the other hand the best fit of the experimental result from neutron scattering,

neglecting the weak temperature dependence, is found to be [105],

ξ2D =
3.8√
δ

(2.28)

Combining Eqs. (2.27) and (2.28), one arrives at the following semi-phenomenological

relation between the effective anti-ferromagnetic exchange constant Jeff (>0) and δ

in the very low doping regime (neglecting the temperature dependent prefactor),

Jeff = −ln[0.075(
δ

1− δ
)] (2.29)
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Figure 2.3: (a) Scaled spin stiffness constant ‘Ds’ vs. doping concentration ‘δ’ plot
obtained from analytical calculation using t-J model with t∼8J for three different
lattice sizes [100x100(upper-most), 128x128(lower-most), 200x200(middle)]; (b) Jeff
vs. doping concentration ‘δ’ plot using Eq. (2.32).

It is very clear from the strong similarities between the nature of the graphs seen

in the two plots in Figs. (2.2) and (2.3), that the pair spin stiffness constant (Ds),

calculated from the t-J model with strict NDOC at zero temperature and multiplied

with proper proportionality constant, can very well represent the real physical effec-

tive antiferromagnetic exchange coupling constant ‘Jeff ’ in the presence of doping at

least qualitatively. Hence, the pair spin stiffness constant can truly be considered as

equivalent to the effective exchange coupling at least in the very low doping region.

Here it may be noted that the plots show the effective exchange constant starting

from δ →0 limit (slightly less than half-filling) as the t-J model is not valid at exactly

δ=0. The similarity is also prevalent for other samples with different band widths

(2t) and Coulomb repulsion barrier Veff ie., corresponding to different initial t/J

ratios.

Having established the equivalence of this calculated ‘Ds’ and the physical ‘Jeff ’,

the variation of ‘Ds’ with doping concentration δ in the entire doping regime is stud-

ied (see Figs. 3(a)–3(c)). However, it must again be emphasized that the t-J model

provides a genuine description of the real doped quantum antiferromagnet only in

the low doping regime.
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Figure 2.4: Scaled spin stiffness constant ‘Ds’ vs. doping concentration ‘δ’ upto 100%
doping in logscale; (a) for 100x100 lattice, (b) for 128x128 lattice, (c) for 200x200
lattice.

From the plots displayed in Figs. (3(a)-3(c)), it can be noticed that there is a

huge decrease in the magnitude of spin stiffness constant ‘Ds’ with increase in doping

concentration and it practically becomes vanishingly small above 20% doping, which

is again supported by the experimental results of Thurston et al. [105].

Moreover, one can find a shoulder-like structure or a point of inflection in all

the above plots Figs. (3(a)-3(c)) near δ=0.61. This may very well indicate a point

of cross-over or phase transition at zero temperature. Emery et al. have shown
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the existence of phase separation in t-J model by both analytical calculation and

exact numerical diagonalization in small in finite lattice [149]. The antiferromag-

netic phase gets separated into a hole-rich phase and a hole-deficient phase for all

J/t ratios below a minimum value of vacancy concentration given by δ < δm. For

strong correlation (small J/t), phase separation occurs due to kinetic energy frustra-

tion in two dimension and the holes are put in a separate region to reduce kinetic

energy [149]. The existence of the point of inflection near δ=0.61 in the derived

analytical and numerical results, which is the artefact of the vanishing of D̃t
s below

δ=0.61, can quite logically represent the occurrence of the phenomenon of phase

separation below δ=0.61 as proposed by [149] and absence of it above this doping

concentration. The vanishing of the contribution from the kinetic energy part is a

plausible signature for the phase separation in this regime where the contribution to

the spin stiffness constant arises solely from the exchange interaction term.

Furthermore, the exact vanishing of Ds only at δ →1 in the calculational re-

sults, is the signature of the persistence of exchange coupling in the form of short

range antiferromagnetic ordering almost upto 100% doping. This is quantitatively

in agreement with results of Himeda and Ogata obtained from simplified variational

calculations as discussed previously [99].

Himeda and Ogata attempted to implement the effect of NDOC through the pro-

jection operator of Gutzwiller state by renormalizing the magnitudes of hopping

amplitude and exchange constant with doping dependent multiplicative factors gt

and gs respectively in the background of an ideal Fermi sea. These renormalized pa-

rameters corresponding to hopping and exchange are related to the un-renormalized

ones by the equations,

t̃eff = gtt, J̃eff = gsJ (2.30)
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where gt and gs are the Gutzwiller factors calculated from variational energy calcu-

lation by Ogawa et al. [103]. The Gutzwiller factor acts as the enhancement factor

on J that introduces the effects of the projection operator in the Gutzwiller state

and the z-component of gs stabilizes the antiferromagnetic order, as shown using

the variational Monte Carlo results [99]. The Gutzwiller factor gJ has been derived

as [99]:

gs =
4(1− δ)2

(1− δ2 + 4m2)2
(2.31)

where m is the expectation value of antiferromagnetic order parameter denoting the

staggered magnetization in the long range antiferromagnetically ordered state. The

vanishing of gs and hence that of J̃eff at δ=1 is clear from the above expression for

gJ . The quantity m is non-zero at δ →0 and is doping dependent ie., (m=m(δ)).

Further m decreases with increasing doping δ and takes a very small value beyond

δ=0.1 [99].

Thus from Eq. (2.31), it follows that gs decreases with increasing δ and approaches

zero value as δ →1. This is qualitatively very similar to the fall observed in Ds vs. δ

plot and to the acquiring of vanishingly small values of Ds as δ approaches 1. Very

importantly however, Himeda and Ogata could not identify any point of possible

phase separation which is present in the plot of Ds vs. δ.

2.4 Discussion

The magnetic behaviour of the doped quantum antiferromagnets in 2D is studied in

terms of generalized spin stiffness constant (Ds) corresponding to t-J model. The an-

alytical calculations described above show that the calculated Ds theoretically goes

to zero at 100% doping concentration. The part of Ds due to kinetic energy part
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remains zero upto δ=0.61 for 2-dimensional lattices, then increases and again goes

to zero at δ=1; however contribution to Ds from the exchange part monotonically

decreases from very low δ and vanishes at δ=1. Total Ds is plotted against δ and it

bears a striking similarity with the Jeff versus δ plot obtained by a combination of

QMC results and experimental data in the low doping regime viz. δ ≤0.05 (see Figs.

(2.2),(2.3)) [136]. The results from Monte Carlo calculation with it’s error limitations

and experimental results are used to extract the dependence of physical Jeff on δ .

Hence these errors and limita- tions are embedded in the Jeff vs. δ plot in (Fig. 2.3).

It should be emphasized here however that even in this region of very small doping,

the holes are not absolutely static as discussed above, but the kinetic energy contri-

bution itself is very small which allows one to consider the holes as almost static in

this region for the QMC based treatment [136,137]. Regarding the results displayed

in (Fig. (2.2)), the calculations could be performed on maximum lattice size only

upto 200x200, which is much below the thermodynamic limit. Moreover, the validity

of the t-J model is restricted to δ →0 limit, which restrained us from calculating

the spin stiffness constant at δ =0. Despite all these limitations and crudeness, the

similarity of the two plots under (Figs. (2.2),(2.3)) is highly significant.

The calculational results for Ds agree qualitatively with those of Himeda and Ogata

at very high δ , as discussed previously. The notable absence of any point of inflex-

ion in the mid-high δ regime in the work of latter, in disagreement with the results

discussed above (see Figs. (2.3a)–(c)), is probably due to inadequate handling of cor-

relation [99,103]. On the other hand, in the very high δ regime the system effectively

goes over to a weakly correlated phase even with a given repulsive potential [129].

Therefore, it is not surprising that the results agree with those of Himeda and Ogata

in this regime.

The detailed band structure effects and interlayer processes are completely neglected
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in my calculation, although it can help determining the magnetic phase boundaries

in some of the real cuprate systems. The transition from long range to short range

ordered phase has been studied previously using spin diffusion coefficient calcula-

tions [132]. This calculation based on time-dependent Hartree-Fock treatment for

dynamical spin susceptibility, showed the survival of the long range ordered phase

upto a critical doping concentration of 14%. This implied the existence of a finite

value of TN in the regime 0≤ δ ≤ 0.14, if the system is made quasi-two dimen-

sional [132]. Later more accurate calculations were performed with the higher orders

terms in the hopping amplitude ‘t’ viz. (t2 and t4 ) taken into account in the self

energy calculation [127,128]. The fall of correlation length and decay of long range or-

dered phase with increasing δ for different J/t ratios were studied [127]. According to

the above results, the disappearance of long range order at T=0 is predicted from the

vanishing of staggered magnetization ‘m’ at a critical doping concentration δc ≈0.025

for very small J/t ratio (J/t=0.2) [127]. This is in agreement with the present nu-

merical results too (Fig. 1) [128]. In the present work based on non-perturbative

method, the calculationally obtained sharp decay of Ds for δ ≤0.03 corresponding

to J/t = 0.125 does also represent the rapid fall of both TN and long range order

with doping in this regime. This is very well supported by the above result [127].

Besides, one also confirms the existence of “novel paramagnetic phase” from present

calculations, if bare ‘J’ is taken to be vanishingly small in the t-J model [132].

The highly doped regions in the plots (see Figs. (3.3a)–(c)) represent in a way the

weakly correlated regimes for the system [99,119,129]. The system in this regime ap-

pears reasonable to be described by the FL Theory. However, the stringent NDOC at

each site ensures the manifestation of the non-Fermi Liquid character of this phase.

A detailed calculation here has been done taking into account only the nearest-

neighbour exchange constant ‘J’ and hopping parameter ‘t’ which automatically leads
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to the renormalized effective exchange constant ‘Jeff ’ (equivalent to Ds). This is in

contrast to the various heuristic phenomenological models like, t-t’-t”-J or t-J1-J2

model which also try to understand the doped phase [89, 112]. Nevertheless, this

first principle approach can very well capture the physics of doped quantum antifer-

romagnets.

In conclusion, the generalized stiffness constant calculation for the strongly corre-

lated t-J model is quite powerful and does bring out the concept of effective antifer-

romagnetic exchange constant appropriate to a semi-itinerant system, quite neatly.

Furthermore, the theoretical approach and results illustrated above are in excellent

agreement with those from various other theoretical approaches and also brings out

limitations of some of them. As stated earlier, the effective exchange constants of

some itinerant magnets like Fe, Ni, Gd have been determined using the techniques

based on ’inverse susceptibility’. Moreover, the exchange correlation in itinerant

magnets can be expressed in terms of the elements of scattering path matrix in the

framework of density functional approach [139,142,143]. Band structure calculation

based on multiple-scattering theory and spin-spiral techniques has also been done for

estimating the exchange interaction in these itinerant magnets [143]. The effective

exchange constant involving the nearest neighbour spins is related to the second or-

der derivative of the magnetic energy with respect to the spin fields. Making use of

this formalism the effective exchange constant turns out to be the inverse dynamic

magnetic susceptibility (DMS), with some assumptions for the weakly interacting

systems [142]. All these approaches described above, show that there has been on-

going theoretical research to determine the exchange constant and study the short

range correlations even in weakly correlated itinerant magnetic systems, which is still

a challenging problem in the field of condensed matter physics. In this context, the

scheme based on generalized spin stiffness calculation provides a novel formalism for
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calculating the effective exchange constant of itinerant magnets, both weakly and

strongly correlated.
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Chapter 3

Determination of effective magnetic behaviour
of doped itinerant antiferromagnets on one
dimensional lattice

3.1 Introduction

The idea and concept of strong correlation and insulating antiferromagnetic prop-

erties in the materials existed from the times of Mott, Hubbard and Neel [3–5], as

already mentioned in the first chapter. These materials show several interesting

properties, the most important of which is the high temperature superconductivity

in the materials at optimal doping region [104]. The interest about this unusual

propery and it’s theoretical understanding has not faded out even in the era of

growing interest in nano and mesoscopic physics. The essential physics of these itin-

erant magnetic systems can be well captured by the single band t-J model at least

in the low to medium doping regime. However, in the case of real materials like

YBa2Cu3O6+x, both Cu and O bands play decisive roles in determining the char-

acteristic behaviour of the systems. The spins residing on the Cu ions situated on

the Cu-O layers are almost localized and the introduced holes mainly stay on the O

sites keeping the valences of the Cu ions unchanged, which is further supported by
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some experimental results [147,150]. The Emery model is commonly used that takes

into account these two kinds of atoms within a similar framework of the extended

Hubbard model [151]. According to this model, the holes on the O ions are consid-

ered as the charge carriers and the pairing is mediated by strong coupling between

the localized spins on the Cu sites, sitting between two O atoms [151]. Zhang and

Rice derived a single band Hamiltonian starting from the two band model following

the idea of single-band effective Hamiltonian originally proposed by Anderson [152].

Later on the two-band p-d model was reduced to the asymmetric Hubbard model,

where the lower Hubbard band (LHB) is occupied by one hole Cu-d like states and

the upper Hubbard band (UHB) is occupied by two-hole p-d singlet states [119,153].

In the strong coupling limit, this asymmetric Hubbard model can be reduced to the

t-J model for the LHB [119,153].

The magnetic properties of the two dimensional layered systems have been stud-

ied for a long time based on the 2D t-J model, some of which have been already

discussed in the preceding chapters. Although, here the main focus would be on the

one-dimensional systems, but before that I would refer a few of the approaches based

on 2D t-J model. For example, the Mori’s projection technique based on two-time

thermodynamic Green’s function and Variational Monte Carlo simulations used to

determine the magnetic correlations in the doped layered systems [120,123,128,128].

The phase separation in the 2D t-J model was also studied by minimizing the to-

tal energy with respect to the number of holes in the hole rich and hole deficient

phase [149].

In case of 1D, the attempts are lesser in number, still there has been some progress.

In one of those attempts, the holes in the system were only considered as the “miss-

ing spins” on a particular site, however, their actual spin configurations were ne-

glected [149]. Moreover, the 1D t-J model has been exactly solved using the Bethe
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Ansatz and various other numerical techniques at specific values of J/t [154, 155].

But for general J/t ratio these techniques could not be used. In this context, the

Density Matrix Renormalization Group (DMRG) and Transfer Matrix Renormal-

ization Group (TMRG) came up as attempts to study the spin correlations away

from the super-symmetric points of the t-J model [156, 157]. The above numeri-

cal calculations were performed at certain chemical potentials, which accounts for

the dependence of spin correlation on electron densities; whereas, no estimation of

the exact values doping concentrations and doping dependence of exchange coupling

could be given [157]. Thus there is a genuine need for an alternative approach to be

attempted. In such a scenario, a more rigorous quantum mechanical approach was

proposed to study the effective interaction between the spin and charge degrees of

freedom of the carriers separately in the conducting phase of a strongly correlated

system in 2D. This would help in identifying the magnetic correlations as well as

fermionic pairing possibilities. For 1D strongly correlated conducting phase, this is

even more relevant indeed and very important as there are exotic possibilities like

‘spin-charge decoupling’ [158].

In the previous chapter, the effective magnetic couplings were determined and

various possible magnetic phases were predicted for the doped quantum antiferro-

magnets on a two-dimensional (2D) lattice. In the calculations the strict ‘no double

occupancy condition’(NDOC) on each site was imposed in the ground state wave

function, characterizing a non-Fermi liquid (NFL) state. The interactions between

the itinerant spin degrees of freedom has been studied in details, in the under-doped

phase, in particular with the calculation of generalized spin stiffness constant (D̃s) for

this model. Moreover, a point of possible quantum phase transition was predicted in

the over-doped regime, with the strongly correlated model extended to that region.

The calculational results for the generalized spin stiffness constant corresponding to
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a single pair of mobile holes (Ds) were compared with the experimental observations

on layers of La2−xSrxCuO4 [105,123,136]. The comparison established the role of Ds

as an effective intra-layer exchange constant between a pair of holes in the quasi-2D

doped antiferromagnetic materials, at least in the regime of low doping concentration

(δ).

Inspired by the successful application of the formalism in 2D doped quantum an-

tiferromagnetic models, in the present chapter, a similar type of prescription has

been has been applied for the theoretical investigation of the doping dependence of

effective spin-spin coupling for the strongly correlated t-J model on the 1D lattice.

The aim of this study is to explore the spin dynamics of this model as well and find

possible application to chained cuprates in the underdoped phases. The results for

1D model are found to be in sharp contrast to the results for that of 2D, implying

once again the strong lattice-dimensional dependence of low-dimensional magnetism.

In 2D, calculated exchange energy contribution to spin stiffness constant (DJ
s ) shows

a drastic fall with increase in δ in the low doping region, whereas, the kinetic energy

contribution (Dt
s) remains zero throughout the low doping regime. This is in very

good agreement with the previous experimental and theoretical (Monte Carlo) re-

sults [105,136]. On the other hand, the calculated DJ
s in 1D falls even more rapidly

initially with δ, and then in striking contrast to the 2D case, the Dt
s in 1D shows an

increase with δ in the very low δ region, followed by a drastic fall again throughout

the rest of the doping regime. This behaviour results in the appearance of a new

peak in the very low δ region of the Dt
s vs. δ plot in 1D.

This approach and the formalism are further enriched by the possible comparison

of the derived results in 1D model with the available experimental results from the

Cu-O chains of YBa2Cu3O6+x (x being the doping concentration), which behaves as

an itinerant paramagnet, believed to be describable by the strongly correlated t-J
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model.

The role of Cu1-O1 planes in high temperature superconductivity has been a debated

issue for a long time, but the necessity of the chains too have been established by

many researchers and resonant elastic x-ray scattering has identified distinct ordering

in chains and planes of YBa2Cu3O6+x [159–164]. Initially the oxygen holes enter the

chains of YBa2Cu3O6+x followed by entry onto the Cu2-O2 planes beyond a critical

value of x (xc) [153, 160–162]. This indicates that the bulk susceptibility measure-

ments on the sample in lower doping regimes corresponds mostly to the response

from the chains of the compound [165].

Static spin susceptibility of exchange coupled paramagnetic systems is generally cal-

culated from zero frequency limit of experimentally extracted imaginary part of dy-

namic spin susceptibility (DSS), using the Kramers Kronig relations [167]. Again

the static limit of the well known Fluctuation Dissipation Theorem relates the real

part of DSS to the static correlation function between the spin degrees of freedom in

the system [167].

The effective intra-chain wave-vector dependent magnetic exchange constants (Jeff (q))

can be expressed as the inverse of the wave-vector dependent static spin suscepti-

bility (χ(q)) by using a standard theoretical approach developed for the itinerant

magnets [142]. Following this, Jeff (0) is calculated, i.e. the effective ferromagnetic

exchange constant is extracted from the experimentally observed uniform dc mag-

netic susceptibility (χ(0)) of YBa2Cu3O6+x [165,166]. Again, the scans corresponding

to q=Q≡ π/a obtained from the inelastic neutron scattering experimental results for

the above material are used to extract the effective exchange constant at the anti-

ferromagnetic wave vector Q=π/a [168].

Finally, following the approach, one can handle the short-ranged ordered param-

agnetic phases of the strongly correlated doped antiferromagnetic systems in a more
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comprehensive way, which has been a major challenge for the theoreticians so far.

The earlier attempts to study the exchange interactions between the spins could

determine the correlations between the localized spins or the itinerant spins only

in the weakly correlated regime [139, 143, 169]. However, the detailed behaviour of

exchange interactions between the spins in the strongly correlated itinerant regime

remains unexplored till today . In this background, quantum mechanical approach

described here, provides an efficient formalism for determining the exchange constant

of strongly correlated semi-itinerant systems, without using the Density Functional

approach and Multiple Scattering Theory [167,168,170,171].

3.2 Mathematical Formulation and Calculation

As already discussed in the previous chapter, the t-J model Hamiltonian for strongly

correlated electronic systems is given by [132]:

Ht−J = Ht +HJ (3.1)

where Ht and HJ are the kinetic (due to doping) and exchange Hamiltonians respec-

tively for the nearest-neighbour processes. Here it may be recalled that this kinetic

energy part arises from the hopping of holes in the doped phase and the exchange

part represents the exchange interactions between the itinerant spin degrees of free-

dom. Moreover, the t-J model gets reduced to the well known localized Heisenberg

model corresponding to the completely half-filled band (undoped phase).

HJ =
∑
<ij>

Jij(
−→
Si .
−→
Sj −

1

4
ninj) (3.2)
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where Si and Sj now represent the localized spin operators corresponding to the ith

and jth sites respectively; Jij is the exchange constant involving the ith and the jth

site and for nearest neighbour pair 〈ij〉, Jij=J; ni and nj are the occupation number

operators for the ith and jth site respectively.

Ht =
∑

<i,j>,σ

tijX
σ0
i X

0σ
j (3.3)

Here tij represents the hopping amplitude from jth to ith site and for nearest neighbour

tij=t. The X’s are the Hubbard operators that satisfy the Hubbard algebra and the

commutation relation:

[Xαβ
i , Xγδ

j ] = δij(δ
βγXαδ

i − δαδX
γβ
i ) (3.4)

To avoid the rather complicated algebra of the Hubbard operators, for simplicity in

the calculation, the Fermion operators satisfying the usual anti-commutation relation

have been used. The relations between the spin and the Hubbard operators are also

used [132]:

S+ = X+− S− = X−+ Sz =
1

2
(X++ −X−−) (3.5)

where the symbols used for all the spin operators have their usual meanings and they

represent the itinerant spin operators.

The generalized spin stiffness constant (D̃s) can be expressed as [132]:

D̃s = D̃t
s + D̃J

s (3.6)
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where D̃t
s and D̃J

s are the contributions to spin stiffness constant from kinetic energy

and exchange energy respectively and are given by [132]:

D̃t
s = lim

φ→0
(
1

2
)
δ2T

δφ2
(3.7)

and

D̃J
s = lim

φ→0
(
1

2
)
δ2Esf

J

δφ2
(3.8)

where φ is the magnetic twist corresponding to the staggered Peierl’s phase φσ arising

from the presence of the vector potential A(−→r ), with the property [132]:

φ↓ = −φ↑ = φ (3.9)

with ‘T’ being the expectation value of the kinetic energy part of the Hamiltonian

(3.1) and ‘Esf
J ’ is the spin flip contribution to the expectation value of exchange

energy part of the Hamiltonian [132].

The hopping amplitude ‘t’ gets modified to tije
iφσ with the inclusion of the Peierl’s

phase φσ, if A(−→r ) has a component along the direction of hopping [132].

The energy expectation values are calculated in the Gutzwiller state, the proposed

variational ground state, with the double occupancy exclusion condition on each

site [133]:

|ψG〉 =
∏
l

(1− αn̂l↑n̂l↓)|FS〉 (3.10)

where |FS〉 is the non-interacting Fermi sea and the variational parameter α denotes

the amplitude for the projection out of the doubly occupied sites corresponding to

the strongly correlated systems. For very strongly correlated systems ie.,for infinitely
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large value of onsite Coulomb repulsion U with respect to bandwidth, the detailed

numerical results show that the variational parameter α very close to 1 in the half-

filled to low doping regime for the 2D systems [172]. As an approximation, taken

α=1 has been taken even for 1D model, implying complete projecting out of the

doubly occupied sites [132].

Further, the Fermi sea in equation (3.10) can be expressed in terms of Fermion

creation operators and thus equation (3.10) becomes:

|ψG〉 =
∏
l

(1− n̂l↑n̂l↓)
kF∏
kσ

∑
ij

C†iσC
†
j−σe

i(−→ri−−→rj ).
−→
k |vac〉 (3.11)

where |vac〉, i, j and l have the usual meaning as described earlier; k is the wave

vector bounded by the Fermi wave vector kF which is defined with respect to the

non-interacting free carriers in the ideal Fermi sea after introduction of vacancies. It

might be noted that kF being the Fermi wave vector for the non-interacting carriers

at T=0, all the k-states below kF are completely filled, as are occurring in the above

equation (3.11).

For 1-D systems, the Fermi wave vector is related to the number of occupied sites

as:

kF = n(π/2a) (3.12)

where ‘a’ is the lattice constant and ‘n’ is the fraction of occupied sites in the system

defined by:

n = Nl/N = (1− δ) (3.13)
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Here ‘δ’ is the doping concentration; ‘Nl’ and ‘N’ are the number of occupied lattice

sites and the total number of lattice sites respectively.

Making use of equations (3.12) and (3.13):

kF = (π/2a)(1− δ) (3.14)

Again combining equations (3.2) and (3.11), Esf
J can be expressed as:

Esf
J = (

2t2effcos(2φ)

Veff
)
NDOC〈ψG|H ′J |ψG〉NDOC
NDOC〈ψG|ψG〉NDOC

(3.15)

where

H ′J =
−→
Si .
−→
Sj −

1

4
ninj (3.16)

with NDOC〈ψG|ψG〉NDOC being the factor for the normalization of the Gutzwiller

state; teff and Veff are the effective nearest-neighbour hopping and on-site Coulomb

barrier potential respectively in the δ →0 limit [132]. In the case of one-dimensional

systems, the initial J in the δ →0 limit is modeled as t2eff/Veff . Here it must be kept

in mind that the investigation for the variation of effective exchange constant with

doping concentration has been done by keeping the initial teff and Veff constant i.e.

bare ‘t’ and ‘J’ as constants.

The detailed rigorous calculations have been carried out for determining the ex-

pectation value of exchange energy in the Gutwiller state. Then taking derivative

twice in the φ→0 limit, one can get the expression for D̃J
s for one-dimension as (for

detailed scheme of application see Appendix A):

D̃J
s = −4J

kF∏
k,σ

2(1− δ)2 (3.17)
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where ‘J’ is the bare exchange constant, as explained earlier. This equation (3.17)

looks very similar to the one for D̃J
s as was obtained for 2D, but here kF corresponds

to the Fermi wave vector for 1-D as given in equation (3.12). It is also seen here that

the magnitude of D̃J
s analytically goes to zero only for δ →1 ie., for 100% doping

concentration, which of course signifies non existence of carriers (holes) in the system!

Similarly, the expression for D̃t
s is also derived (for derivational scheme see Appendix

B):

D̃t
s = (−t)[

kF∏
k,σ

4cos(ka)(1− δ)2 −Nl

kF∏
k,σ

4cos(ka)/N2] (3.18)

The second term in equation (3.18) appears due to complete projection of the dou-

bly occupied sites and becomes negligible for very high values of δ, as the chances of

double occupancy decrease with increase in vacancies in the system.

Then from equation (3.18) one sees that the quantity D̃t
s vanishes for δ →1. Fur-

thermore, D̃t
s also vanishes if at least one value of ‘k’ in the whole set of values of

k in the range 0≤ |k| ≤ kF is π/2a [132]. This condition will be satisfied if the

upper boundary of k is greater than or equal to π/2a, which can be ensured with

(kF )threshold=π/2a [132].

Then from equation (3.14)

(π/2a)(1− δ) = π/2a (3.19)

This condition can only be satisfied for δ →0 ie., in the undoped phase.

Hence, the spin stiffness constant at the δ →0 limit is solely due to the contribution

from the exchange energy part and the total D̃s vanishes theoretically only for 100%

doping concentration.

As was explained in our earlier paper, D̃J
s and D̃t

s are further scaled down by NlC2
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which is the number of possible pairs of mobile holes in the system.

Thus,

Ds = D̃s/
NlC2 (3.20)

Further, we have defined the contribution to the generalized spin stiffness from the

exchange energy, per pair (DJ
s ) as:

DJ
s = D̃J

s /
NlC2 (3.21)

and the contribution to the generalized spin stiffness from the kinetic energy, per

pair (Dt
s) as [?]:

Dt
s = D̃t

s/
NlC2 (3.22)

DJ
s and Dt

s are evaluated and plotted against δ for bare J/t=0.1 and for three

different lattice lengths viz.(1900,1940,1960) which are presented in the next sec-

tion. The comparison with other theoretical and experimental results on doped

YBa2Cu3O6+x are also presented in the next section of this chapter. It is quite per-

tinent to mention that the results do not change with increasing lattice size and thus

attain convergence and become free of finite size effects as much as possible.

3.3 Numerical Results and Comparison with Ex-

perimental and other Computational Results

A vast literature surver was done for finding relevant experimental results on quasi-1D

strongly-correlated doped antiferromagnetic systems [173–179]. The very few avail-
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able experimental results on the doped SrCu2O3, Sr2Cu3O5, CaCu2O3 etc. could not

be used for detailed comparison with our theoretical results on strongly correlated

t-J model [173–179]. Hence, for a detailed and rigorous comparison, the neutron

scattering results from doped YBa2Cu3O6+x have been considered, which has both

Cu-O chains and planes and is a Mott-Hubbard insulator in the parental phase.

Moreover, the doped phase can be very well described by the strongly correlated t-J

model [180]. The doping in YBa2Cu3O6+x introduces the vacancies only in the chains

upto a critical doping concentration viz. xc ∼0.41 and during this the valencies of

copper and oxygen in the planes remain unchanged [159]. Here it is important to

point out that the randomly doped oxygen atoms in the chains convert the neigh-

bouring Cu+1 ions into Cu+2 [181]. The oxygen doping induces coupling between the

spins situated on the chains, after a considerable amount of mobile holes have been

generated [163]. The further doping introduces more number of mobile holes and re-

duces the antiferromagnetic coupling between the itinerant spin degrees of freedom.

As a consequence, the chains play a very important role in determining the response

of the system to any externally applied perturbation, in the under-doped regime.

The wave vector dependent static spin susceptibility of YBa2Cu3O6+x can be ex-

tracted from the constant q-scans of the available neutron scattering data [165]. The

next step is to determine the effective spin exchange coupling J(q) for any stable

magnetic state in an itinerant magnetic system. In general spin exchange constant

can be shown to be directly related to the inverse of static wave-vector dependent

spin susceptibility χ−1(q) [142]. To elaborate slightly on this, the non-local static

magnetic susceptibility (χ̃) can be expressed as the variation in spin magnetization

‘m’ with respect to the external static magnetic field (Hext) in the continuum case

as follows [142]:

where {mr} denotes the magnetization at {−→r }, representing any thermodynami-
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cally stable spin configuration and ‘E’ is the ground state energy assuming the system

to be at zero temperature.

Therefore from equation (3.23), we can write χ̃ as [142],

χ̃ = χ̃ J̃(−→r ,−→r′ ) χ̃ (3.23)

where J̃(−→r ,−→r′ ), the exchange coupling in real space connecting the spin magnetiza-

tions at −→r and
−→
r′ , is given by the usual definition [142],

J̃(−→r −→r′ ) = − δ2E

δm(−→r )δm(
−→
r′ )

∣∣∣∣
{m(−→r )}={mr}

(3.24)

The above equations are very general ones valid for any itinerant magnetic system.

Now making use of equations (3.23) and (3.24) and for convenience calling J̃(−→r ,−→r′ )

as J̃eff (
−→r ,−→r′ ) and χ̃(−→r ,−→r′ ) as χ̃eff (

−→r ,−→r′ ), appropriate to a doped quantum anti-

ferromagnet (a special type of strongly correlated itinerant magnet), one can arrive

at the following relation,

J̃eff (
−→r ,−→r′ ) = χ̃−1eff (

−→r ,−→r′ ) (3.25)

Here, transaltional invariance and isotropy ensure χ̃(−→r ,−→r′ ) ≡ χ̃(| −→r −−→r′ |).

Now, taking the Fourier transform,

Jeff (q) = χ−1eff (q) (3.26)

It may be noted that the equation (3.26) is valid for all wave vectors, corresponding to

any thermodynamically stable magnetic state, whether spontaneously magnetically

ordered or not [142,182]. Hence, this equation is valid even for the exchange coupled

paramagnetic state with short-range spin correlations and may be used for determin-
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ing Jeff (q) with the procedure being called ‘inverse susceptibility approach’ [142,182].

Therefore, corresponding to the antiferromagnetic wave vector q=Q≡ π/a,

Jeff (π/a) = χ−1eff (π/a) (3.27a)

and for ferromagnetic coupling,

Jeff (0) = χ−1eff (0) (3.27b)

Incidentally the above equations, valid even for a non-FL, look formally quite sim-

ilar to the relation between the static spin susceptibility and the inverse of Landau

parameter for a FL [183].

Using the minimization condition in equation(3.24), one can notice that all the above

values of ‘Jeff ’ are negative. Here, we will concentrate on the variation of the absolute

magnitude of ‘Jeff ’ with δ, since the sign of ‘J’ for ferromagnetic and antiferromag-

netic coupling solely depends on the sign convention in writing the Hamiltonian

(equation (3.2)).

Interestingly, the quantity Ds represents another form of this spin-spin coupling in

an itinerant magnet and its equivalence with Jeff was established earlier. Here I

present our results for the variation of DJ
s and Dt

s with δ for J/t=0.1, which is true

for most of the cuprates [184].
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Figure 3.1: ‘DJ
s ’ vs. doping concentration (δ) for: (a) lattice length=1900; (b) lattice

length=1960; (c) Jeff (π/a) vs. δ obtained from the neutron scattering results on
YBa2Cu3O6+x. (In Fig.(c): The line gives the best polynomial fit to the data) [168]

The plots in (Figs.(3.1a,b)) show that DJ
s falls drastically with increase in doping

concentration and practically vanishes within δ ≈0.005. This δ is much lower than

the critical doping concentration observed for the 2D lattices. The suppression of DJ
s

corresponds to the fall in the “semi-localized part” of spin stiffness constant, further

implying the destruction of original Heisenberg-like antiferromagnetic coupling in 1D

with the introduction of very small amount of doping in the system.

Fig.(3.1c) shows the fall of Jeff (π/a) as a function of δ, extracted from the constant

q scans of neutron scattering data corresponding to q=Q≡ π/a, which strongly

resembles the behaviour our derived results of DJ
s against δ [168]. This rapid fall

represents the loss in rigidity of the spins, as expected from the decay of semi-

localized antiferromagnetism of the spins with Heisenberg-like character.

70



Figure 3.2: ‘Dt
s’ vs. doping concentration (δ) for: (a) lattice length=1900; (b) lattice

length=1960; (c) Jeff (0) vs. δ obtained from the dc susceptibilty measurements
of YBa2Cu3O6+x. (In Fig.(c): The line gives the best polynomial fit to the data)
[165,166]

Figs(3.2a,b) show that Dt
s vanishes at δ=0, in accordance to our analytical

results in the previous section. Beyond δ →0 limit, Dt
s increases with δ in the very

low doping regime, followed by a subsequent fall throughout the rest of the doping

region. This characteristic behaviour leads to the appearance of a maximum in the

Dt
s vs. δ plot around 2%-3% doping concentration. The increase in the magnitude of

Dt
s with δ and the appearance of the above peak signify the tendency of the itiner-

ant spin degrees of freedom to develop another coupling, different from the original

Heisenberg one.

The behaviour of experimentally extracted Jeff (0) with increase in δ, in the low

doping region, is shown in Fig.(3.2c) [165, 166]. Jeff (0) initially increases with in-
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creasing δ and again falls with further increase in doping concentration, giving rise

to the appearance of a peak in the Jeff (0) vs. δ plot (see Fig.(3.2c)]. A maximum

is also seen in our calculated Dt
s vs. δ plot. Combining these experimental and

theoretical results, we infer that there is a tendency of the itinerant spins in the

system to develop a ferromagnetic-like coupling, corresponding to the wave vectors

around q=0 [see Figs.(3.2a,b,c)). As δ is increased further, this coupling also gets

greatly reduced and the spins become almost non-interacting to exhibit a behaviour

analogous to Pauli-like in its magnetic response.

Figure 3.3: Scaled spin stiffness constant (Ds) vs. doping concentration (δ) for
different lattice sizes in semi-logscale (Y-axis in log-scale)

The Fig.(3.3) shows the plot of Ds versus δ upto δ=0.3. There exists a very

sharp peak situated very close to δ=0, corresponding to the original quasi-long range

antiferromagnetic ordering of semi-localized nature. However, this peak occurring at

the extremely small value of doping concentration could not be shown in this figure.

The presence of the peak at finite δ shown in Fig.(3.3), does represent an itinerant

magnetic coupling tendency and this reminds one of the Stoner-like behaviour of

the spin susceptibility, although in a strongly correlated background here. Anyway,
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it must be pointed out that this itinerant coupling tendency does not lead to any

long-range order in the system, even at zero temperature. The above plot shows that

the slope of the fall of Ds increases with increase in lattice size and the total spin

stiffness practically vanishes much below 100% doping concentration. So it is worth

mentioning that although analytical calculation proves the existence of rigidity of

the spins upto 100% doping concentration, in reality the system becomes analogous

to almost Pauli-paramagnetic-like at much lower value of doping concentration.

The comparison of our results with those from other theoretical approaches shows

agreements and certain disgreements as well. This highlights the crucial importance

of our formalism in describing the quasi-1D doped antiferromagnetic systems and also

clearly brings out the shortcomings of a few of the other approaches. The singlet cor-

relation between spins has been found previously using DMRG technique [156]. The

calculated spin correlation falls with the increase in doping concentration [156]. As

shown in Figs.(3.1-3.3), our derived DJ
s rapidly decreases with δ and practically van-

ishes within the range of very low doping concentration. Thus, this is in agreement

with DMRG results in the low doping regime. Furthermore, the TMRG calcula-

tion shows an increase in static spin susceptibility (χ(0)) with increase in δ [157].

The increase in static uniform susceptibility results in the fall of Jeff (0) with δ, as

discussed in detail in the previous section (see equation (3.27b)). So, this result is

also in agreement with the behaviour of our calculated Dt
s as a function of δ, in the

medium to over-doped regime.

Moreover, our analysis based on simple energetics consideration give an estimate of

the size of a possible “Nagaoka strip” in a doped quantum antiferromagnet described

by the t-J model in 1D, in analogy with the formation of a well-known “Nagaoka

bubble” in 2D. The total energy of the Nagaoka strip with respect to the antiferro-

73



magnetically ordered state having no holes is given by [185]:

E = −2 + (2.40)2/s2 + 0.5Js (3.28)

where ‘s’ is the length of the possible Nagaoka strip in 1D, 0.5J is the energy cost

of the creation of a ferromagnetic bond relative to an antiferromagnetic one [185].

Minimizing ‘E’ with respect to s gives:

s ≈ 2.84J−1/3 (3.29)

leading to,

E = −2 + 2.134J2/3 (3.30)

Here ‘s’ must be larger than one lattice spacing and also the system size must be

much larger than ‘s’ to avoid finite size effects [185]. The energetics consideration

shows that there is a distinct possibility of formation of a Nagaoka strip, depending

on the values of J , provided the above boundary conditions are satisfied.

3.4 Discussion

In the previous section, a detailed comparison of our calculational results with

the relevant experimental and other theoretical ones are presented, which firmly es-

tablished that the generalized spin stiffness constants can play the role of effective

exchange constants for quasi-1D doped quantum antiferromagnets as well, like that

in the case of quasi-2D approaches. Moreover, the results for 1D model are re-

markably distinct from that of 2D and this striking contrast can have very different

consequences for microscopic physics corresponding to various phenomena in quasi-

1D and quasi-2D systems.
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Our analytical and numerical results predicted the rapid decay of quasi-long-range

ordered localized antiferromagnetic state, with increasing doping concentration (see

Figs.(3.1a,b)). Most interestingly, our derived results in 1D, predicted the emergence

of an unconventional itinerant paramagnetic phase with ferromagnetic spin-spin cou-

pling, after the decay of quasi-long-ranged antiferromagnetically correlated one oc-

curring at zero temperature (see Figs.(3.2a,b)). The comparison with experimentally

extracted results from the chains of YBa2Cu3O6+x supports the emergence of this

ferromagnetic-like coupling between the spin degrees of freedom, as described in the

previous section [160,163].

A few experimental studies had been carried out on the truly 1D Heisenberg

chains like Sr2CuO3, where the intra-chain antiferromagnetic exchange constant

(J=2200±200K) is much higher than the coupling between the chains [176, 183].

The susceptibility of Sr2CuO3 satisfies the Bonner Fisher behaviour throughout the

entire temperature range [176, 186]. The doped Cu chains were also experimentally

realized in Ca2+xY2−xCu5O10 [187]. The doping introduces static holes in the infinite

chains of edge-linked CuO4 plaquettes [187]. However, the prediction of ours is on the

magnetic behaviour of purely 1D Cu-O chains doped with vacancies, which renders

the holes to be itinerant. This should be taken up more seriously by computational

physicists and experimentalists for further investigation.

The very novel prediction of ours regarding the tendency of spin-recoupling in 1D,

is in sharp contrast to our former results in 2D, exhibiting a possibility of a quan-

tum phase transition in the over-doped regime. The presence of a point of quantum

phase transition in 2D possibly denotes the existence of a separated hole-rich and

hole-deficient phase below the critical value of doping concentration, as was previ-

ously predicted by numerical calculations [149]. However, in 1D, the point of possible

phase transition is not seen at any finite value of δ for our choice of J/t ratio. The

75



different phases of the 1-D t-J model was previously studied using the exact diag-

onalization results [154]. The presence of a phase separated state was confirmed

by the divergence of thermodynamic compressibility around Jc/t=2.5-3.5 at various

electron densities. At lower values of bare J/t, the phase separation is destroyed

either in the limit of very low doping concentration (δ ∼0) or in the very high doping

limit(δ ∼1). This was denoted by a possible second order phase transition occurring

at J/t=2 in the δ ∼ 1 limit [154].

The presence of a ferromagnetically ordered state in the two(three) dimensional

t-J model was established by DMRG and classical Monte Carlo simulations [58,188].

The motion of a single hole and a pair of holes in two dimension was studied us-

ing the exact diagonalization method [189]. The result shows that a single hole

travels around a square to maintain the antiferromagnetic background intact, rather

than travelling along a straight line [189]. Again, the motion of a single hole in

the background of antiferromagnetically coupled spins were extensively studied in

the atomic limit of the Hubbard model with U>>t. A single hole can form a fer-

romagnetic bubble (Nagaoka bubble) around itself to minimize the kinetic energy,

provided J<<t [190]. The radius of the Nagaoka polaron increases with the decrease

of J/t ratio [58, 188]. For finite values of J(J>0) and finite density of holes, the

ground state is determined by the competing antiferromagnetic exchange interaction

and Nagaoka ferromagnetism. This competition can lead to a phase separated state

with a hole-rich ferromagnetic region and an antiferromagnetic region with localized

spins [188]. For larger values of J/t, a different kind of spin arrangement is expected

and there is a possibility that the introduced hole makes self-retracting excursions

from the origin, leaving the antiferromagnetic background intact [191]. Interestingly,

our calculations for the 1D t-J model with finite value of J/t(∼0.1) and finite number

of holes, also show a tendency to develop a ferromagnetic coupling between the spins
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in the lower doping region, which becomes more pronounced as J/t is decreased.

Recently, the phase diagram of the Hubbard model and frustrated Hubbard model

has been studied using the density matrix embedding theory [192]. The strong cou-

pling diagram technique revealed the influence of the long range spin and charge fluc-

tuations in the long range antiferromagnetically ordered phase of the two-dimensional

Fermionic Hubbard model, with large repulsions and at very low temperature [191].

The above technique showed the destruction of this antiferromagnetic ordering with

the increase in doping concentration, similar to that of ours in the low doping

regime [193]. In some other earlier works, the nature of the effective interaction

between the static holes in doped La2−xSrxCuO4 was analytically studied in the very

low doping region (x∼0.05) [182]. The authors have shown that the addition of

holes introduces ferromagnetic coupling between the Cu++ spins and the frustration

leads to the emergence of a different type of a spin glass ordering in the under-doped

regime [147,150]. Later, a slightly different kind of model was derived from the two-

band Emery model, which gets reduced to the Zhang-Rice proposed t-J model in the

strong correlation limit [194]. For extermely large correlation the Zhange-Rice sin-

glets are well formed, however, the singlets get deformed in the low energy limit and

ferromagnetic bonds are formed between the neighbouring Cu atoms. The competing

ferromagnetic and antiferromagnetic results in the spin-glass type of arrangement in

general [194].

The strongly correlated 2D models often show a transition from a non-Fermi liquid

(NFL) strange metal phase to weakly correlated Fermi liquid (FL) phase in the mid-δ

regime with the same bare value of U [129, 158]. In contrast, the t-J model shows

the possibility of 1D fermionic systems for small J behaving as Tomonaga-Luttinger

liquids (TLL) with the power law scaling of the correlation functions [195]. Though,

in this work, we did not analyze the behaviour of the k-dependent momentum dis-
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tribution function near kF , nevertheless, we could well specify the magnetic phases

and the corresponding phase boundaries throughout the range.

Our overall calculation has been done considering the simplified t-J model on a 1D

tight binding lattice under a semi-continuum approximation. The lattice sizes taken

are also much below the thermodynamic limit (N→ ∞). However, the behaviour

of the spin stiffness with δ remains unchanged with increase in lattice size and the

size independence is reached with further increase in lattice size as the k-values are

almost continuous for higher lattice sizes (see Figs(3.1a,b),(3.2a,b)). The applicabil-

ity of the strongly correlated t-J model to the over-doped regime in real materials

is questionable, as the on-site Coulomb correlation between the holes in the system

weakens drastically with increase in δ in the higher doping regimes. Nevertheless,

our non-perturbative calculations on the basis of the t-J model can correctly predict

the magnetic behaviour of doped antiferromagnets keeping the ‘no double occupancy

condition’ intact, at least in the under-doped regime.

I have already stated in the preceding sections that our results are all derived

considering only the nearest neighbour hopping and interactions between the spin

degrees of freedom (t-J model). Regardless of this, the detailed comparisons of our

results with the available experimental results, clearly demonstrates the success of

our approach and formalism for analysing the magnetic correlations present in the

low-dimensional strongly correlated doped antiferromagnetic systems. However, for

real materials, the higher neighbour terms for both hopping and interaction play a

significant role in determining the magnetic properties and even the high tempera-

ture superconducting phase boundaries of the hole-doped cuprates [196]. Therefore,

a deeper understanding of the magnetic phase boundaries of these materials requires

the inclusion of higher neighbour hopping and interaction in the corresponding cal-

culations. In this context, we have done some calculations, considering the t1-t2-t3-J
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model, which show that the point of possible quantum phase transition in 2D could

be brought down to the mid-δ regime from the over-doped phase. This transition

point incidentally may coincide with that of the cross-over from anomalous Mott-

Hubbard conducting phase to normal Fermi liquid-like metallic phase in real mate-

rials [9, 197, 198]. Carrying out similar calculations for the 1D strongly correlated

t1-t2-t3-J model, we have found that the position of the peak in Ds occurring at

a finite δ, gets shifted to lower values of δ and it reaches the δ →0 limit beyond

the critical values of t2 and t3. The calculations including the higher neighbour

exchange interactions are also necessary to strengthen our approach in future, for

detailed investigation of the magnetic correlations in the doped quantum antiferro-

magnets [110, 111, 113]. The calculations of charge couplings using a similar kind of

prescription for the t1-t2-t3-J model will be presented in detail in the next chapter

To summarize, our calculations for generalized spin stiffness constant, introduces a

comprehensive way for determining the evolution of the effective exchange coupling

for the 1D strongly correlated t-J model with doping. With this, it is also possible to

determine the magnetic phases appearing in the strongly correlated long-range an-

tiferromagnetic insulators upon hole doping, in both one and two dimensions. The

effective spin-spin interactions in the short-ranged ordered conducting paramagnetic

phases showing NFL behaviour, have been studied with much rigour and precision.

Further, the study of the interactions between the charge degrees of freedom, in terms

of generalized charge stiffness constant (spin symmetric quantity) are described in

the next chapter.
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Chapter 4

Investigation of charge coupling in low-
dimensional hole-doped quantum antifer-
romagnets

4.1 Introduction

Most of the layered cuprate superconductors are known to exhibit many charac-

terististic phases, supported by consistent experimental evidences [199–201]. As

discussed in the last two chapters, the spin dynamics plays an important role in

studying the magnetic behaviour of the phases, bearing the signatures of strong

and weak correlations in the different doping regions. The phases include the long

range ordered antiferromagnetic phase in low doping regime, anomalous non-Fermi

liquid-like conducting phase and normal Fermi liquid-like conducting phase at higher

doping regions. Interestingly, the optimally doped region shows high temperature

superconductivity below the corresponding critical temperature [199–201]. However,

the subsequent discussions about this unconventional superconductivity in cuprates

are necessarily accompanied by the possibility of pair formation in these systems.

The interaction between the charge degrees of freedom, in effect to the Coulomb
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potential, are important in determining the pairing possibility in the strongly corre-

lated doped phases [150]. Study of correlations between the spin and charge degrees

of freedom in the itinerant phases of doped cuprates involves the Cu and the O

bands [147, 150]. Later, the two band Hamiltonian was reduced to the well known

single band t-J model in the low energy limit [119,152,153].

The magnetic interaction in 2D systems was studied using many theoretical ap-

proaches including Mori’s projection technique based on two-time thermodynamic

Green’s function and Variational Monte Carlo simulations [123, 124, 127, 128, 205].

On the other hand, the 1D t-J model is exactly solvable using Bethe Ansatz at

specific values of J/t [154, 203]. Density Matrix Renormalization Group (DMRG)

and Transfer Matrix Renormalization Group (TMRG) techniques have been used

very successfully in 1D to find the spin correlations away from the super-symmetric

points [54, 156]. In 2D too, some attempts using DMRG have been done to find

the spin and charge density orders in the doped Hubbard model [157]. In the pre-

vious chapters, we have discussed a non-perturbative quantum mechanical approach

to determine the spin correlations in both 2D and 1D doped antiferromagnets, on

the basis of generalized spin stiffness constant corresponding to the t-J model. Our

results in 1D lead to a very interesting consequence regarding the formation of a

new type of spin-spin coupling as doping increases, which is totally distinct from the

original antiferromagnetic coupling seen in the insulating and under-doped phases.

Our novel prediction was further supported by other experimental and theoretical

results .

Beside the spin correlations, the attempts to determine the charge correlations

include the determination of the inverse dielectric function, involving the standard

many body formalism in a Fermi liquid [182]. The total free energy used in the calcu-

lation comprises of the Hartree-like term and the exchange correlation contributions.
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It was found that the Coulomb interaction thus calculated from the inverse of di-

electric function, can even change sign and turn attractive if the spin susceptibility

is larger than a threshold value [182]. This can trigger the possibility of pairing in

some of the doped antiferromagnetic systems. However, the above technique could

not determine the charge coupling in strongly correlated phases of the systems, where

the double fermionic occupancy on each site is disallowed.

The other approaches include the finding of the local charge stiffness tensor (Dαβ)

as the response of the system to any change in boundary condition [204]. The compo-

nent Dαα was used to find the optical mass and was shown to be directly proprtional

to the Drude weight [204]. But the magnitudes of charge stiffness constants, calcu-

lated by applying the Lanczos algorithm, were determined only at discrete values of

hole concentrations [204,205]. The Drude weight calculated by exact diagonalization

technique in Hubbard cluster shows an increase in the lower doping regime, where

the interacting holes are considered as the major carriers [164]. Furthermore, in the

over-doped regime, the weakly interacting electrons take the role of the major carriers

and the Drude weight falls in magnitude [206]. Moreover, the dynamical conductivity

derived based on the memory function technique in terms of the Hubbard operators,

was found to be proportional to doping concentration [119]. In contrast to the 2D

case, both Hubbard and t-J models are exactly solvable in 1D, involving the Bethe

ansatz [52, 79, 207, 208]. The transport properties for the 1D Hubbard model has

been studied using the Bethe Ansatz solution combined with the global symmetry

and the operator algebra for the Hubbard operators [209]. The charge stiffness con-

stant calculated at finite temperature (T>0) corresponds to the response to a static

field characterizing the weightage of the Drude peak [209]. However, these calcula-

tions were carried out only on the exactly half-filled Hubbard model i.e., zero doping

limit. In order to have a more clearer, definite and detailed understanding of the
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doping dependences of the charge stiffness, we embark upon an analytical approach.

In this chapter, I would describe a detailed formalism for determining the inter-

action and coupling between the charge degrees of freedom and to put forward a

comparative study between the charge and the spin couplings. Similar to the case

of spin degrees of freedom, here the doping dependence of charge-charge coupling is

studied in terms of the evolution of generalized charge stiffness constant with dop-

ing concentration at T=0. In the strongly correlated under-doped regime, we have

involved the nearest neighbour t-J model preventing the double occupancies. How-

ever, in the weakly correlated over-doped regime, we have used the t1-t2-t3-J model

with the Gutwiller variational parameter α very small or zero, which allows double

occupancies in the system. The results of charge stiffness in the lower doping regions

are compared with other theoretical and experimental results on layered cuprate sys-

tems [206,211]. Based on the comparisons, we have shown a qualitative equivalence

between Drude weight and our derived charge stiffness constant. The connection be-

tween charge stiffness and effective Coulomb interaction in the doped regimes is also

established within the framework of random phase approximation (RPA). Finally, I

have explored the consequences and various possibilities arising from our systematic

studies as stated above.
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4.2 Results

4.2.1 Calculational formalism and numerical results for charge

stiffness

Strongly correlated and with nearest neighbour hopping

The nearest neighbour t-J model Hamiltonian for strongly correlated electronic sys-

tems is [146,212]:

Ht−J = Ht +HJ (4.1)

where Ht and HJ represents the hopping and exchange interactions involving nearest

neighbour sites, respectively with restrictions on double occupancy at each site. The

expression for the kinetic energy Hamiltonian is given as [146,212]:

Ht = −
∑

<i,j>,σ

tijX
σ0
i X

0σ
j (4.2)

Here tij represents the hopping amplitude from jth to ith site and for nearest neighbour

tij=t and the X’s are the Hubbard operators.

Again for the exchange energy part is represented as [146,212]:

HJ =
∑
<ij>

Jij(
−→
Si .
−→
Sj −

1

4
ninj) (4.3)

where Si and Sj now represent the spin operators corresponding to the ith and jth

sites respectively; Jij is the exchange constant involving the ith and the jth site and

for nearest neighbour pair 〈ij〉, Jij=J; ni and nj are the occupation number operators

for the ith and jth site respectively.
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As was done earlier for generalized spin stiffness constant (D̃s), a similar kind of

equation also holds for the generalized charge stiffness (D̃c)

D̃c = D̃t
c + D̃J

c (4.4)

where D̃t
c and D̃J

c are the contributions to charge stiffness constant from kinetic

energy and exchange energy respectively and are given by [130,132]:

D̃t
c = lim

φ→0
(
1

2
)
δ2T

δφ2
(4.5)

and

D̃J
c = lim

φ→0
(
1

2
)
δ2EJ
δφ2

(4.6)

where ‘T’ and ‘EJ ’ are the kinetic energy expectation value and exchange energy

expectation value of the t-J Hamiltonian. φ is the electric twist corresponding to the

Peierl’s phase φσ arising from the presence of the vector potential A(−→r ) as used in

the definition of generalized stiffness constants [130, 132]. The quantity φσ has the

following property for the spin symmetric case:

φ↓ = φ↑ = φ (4.7)

[This is unlike the spin asymmetric case, where we had used φ↓ = −φ↑ = φ]

We have evaluated the expectation values in the Gutzwiller state.

|ψG〉 =
∏
l

(1− αn̂l↑n̂l↓)|FS〉 (4.8)
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where α is the variational parameter deciding the amplitude for no-double occupancy

of any site and |FS〉 is the Fermi sea ground state. At first we take α=1 for completely

projecting out the doubly occupied sites.

|ψG〉NDOC =
∏
l

(1− n̂l↑n̂l↓)
kF∏
kσ

∑
ij

C†iσC
†
j−σe

i(−→ri−−→rj ).
−→
k |vac〉 (4.9)

where |vac〉, i, j and l have the usual meaning.

The exchange energy for the spin symmetric case (see eq.(6)) can be written as:

EJ = (
zt2eff
Veff

)
NDOC〈ψG|H ′J |ψG〉NDOC
NDOC〈ψG|ψG〉NDOC

(4.10)

where ‘z’ is the co-ordination number i.e., z=4 for 2-D and 2 for 1-D and

H ′J =
−→
Si .
−→
Sj −

1

4
ninj (4.11)

with NDOC〈ψG|ψG〉NDOC being the normalization factor for the Gutzwiller state

|ψG〉NDOC .

Since EJ is φ independent [see eq.(10)],

D̃J
c = 0 (4.12)

Thus D̃c = D̃t
c always.

Hence the exchange energy contribution to charge stiffness vanishes in the entire

doping region. This may be completely physical because the interchange of spins has

no effect on the carriers in terms of their charge responses.

The total charge stiffness is given by the kinetic energy contribution to charge
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stiffness (D̃t
c). The kinetic energy is derived as:

In 2D,

T (φ 6= 0) = (−t)[
kF∏
kx,σ

∑
σ

4cos(kxa)(1− δ)2cos(φσ)−Nl

kF∏
kx,σ

∑
σ

4cos(kxa)cos(φσ)/N2]

(4.13)

Now taking the second order derivative, one can get:

D̃c = (t)[

kF∏
kx,σ

4cos(kxa)(1− δ)2 −Nl

kF∏
kx,σ

4cos(kxa)/N2] (4.14)

(while the vector potential is applied in x-direction )

Similarly, for 1D,

D̃c = (t)[

kF∏
k,σ

4cos(ka)(1− δ)2 −Nl

kF∏
k,σ

4cos(ka)/N2] (4.15)

where Nl=N(1-δ), N is the total number of sites and ‘δ’ is the doping concentration

and the Fermi momentum kF in 2-D has the form in the quasi-continuum approxi-

mation [132]:

kF =

√
2π(1− δ)
a

(4.16)

and in 1-D:

kF = (π/2a)(1− δ) (4.17)

Here it can be noted that the form of D̃t
c is similar to that of D̃t

s in both one and

two dimensions. Hence following the same arguments described in our two previous
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papers, D̃c vanishes if at least one value of kx in 2D (k in 1D) satisfies:

For 2D,

kxa = π/2 (4.18)

and for 1D

ka = π/2 (4.19)

This condition can be satisfied only when kFa=π/2. Using the expressions for kF

(see eqs. (4.16,4.17)), one can get the vanishing conditions are δ → 1 and δ 60.61

for 2D model and at δ → 1 and δ → 0 for 1D. For the vector potential applied in the

x-direction, we get the value of δ=δc ≈0.61, below which the charge stiffness remains

zero in 2D.

The total charge stiffness constants derived for the strongly correlated α=1 case

in 2D and 1D are plotted against δ (see Figs.(4.1,4.2)). In the plots, the total charge

stiffness has been scaled down by the number of pairs of mobile holes in the system,

to extract an equivalent stiffness corresponding to a pair of mobile charge carriers:

Dc = D̃c/
NlC2 (4.20)
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Figure 4.1: Dc vs. δ in 2D: (a) lattice size=700x700; (b) lattice size=800x800

Figure 4.2: Dc vs. δ in 1D: (a) lattice length=1800; (b) lattice length=1900

In 2D, the scaled charged stiffness constant vanishes upto the critical doping

concentration δc, followed by a sharp rise in Dc. The Dc again falls drastically with

further increase in doping concentration, giving rise to the appearance of a very sharp

cusp-like peak in the over-doped region as shown in Figs.(4.1a,b). For the 1D model,

Dc shows a maximum in the low doping region, and zero elsewhere (see Fig.(4.2a,b)).

Nevertheless, the calculation in the over-doped regime is not justified only with the

nearest neighbour t-J model. The inclusion of higher neighbour hopping terms are

necessary for correctly predicting the behaviour of the higher doping regions.
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Weakly correlated with higher neighbour hoppings

In the previous sub-section, the charge stiffness in the strongly correlated regime

is derived, considering only the nearest neighbour interaction. Now, in this sub-

section I will consider the stiffness constants for any general value of α. As stated

earler, the value of α controls the amount of double occupancies in the system and

the smaller values of α allow higher number of doubly occupied sites. Here, for a

comparative study, we consider the the limiting case of the highly over-doped regime,

which mimics the ideal Fermi sea with α=0 i.e, allowing double occupancies in the

system. Moreover, in the over-doped regime, the higher neighbour hoppings are also

significant, so two higher neighbour terms are incorporated in the t-J model.

The t1-t2-t3-J model is given as [213]:

H = −t1
∑

<i,j>,σ

C†iσCjσ − t2
∑

<<i,j>>,σ

C†iσCjσ − t3
∑

<<<i,j>>>,σ

C†iσCjσ + J
∑

<i,j>,σ

Si.Sj

(4.21)

where t1, t2 and t3 represent the first, second and third neighbour hopping amplitudes

respectively.

With the vector potential applied along the x-direction as before, we get, in 2D,

D̃c = [

kF∏
kx,σ

4{(t1)cos(kxa) + (t2)cos(2kxa) + (t3)cos(3kxa)}(1− δ)2−

αNl

kF∏
kx,σ

4{(t1)cos(kxa) + (t2)cos(2kxa) + (t3)cos(3kxa)}/N2] (4.22)
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and in 1D,

D̃c = [

kF∏
k,σ

4{(t1)cos(ka) + (t2)cos(2ka) + (t3)cos(3ka)}(1− δ)2−

αNl

kF∏
k,σ

4{(t1)cos(ka) + (t2)cos(2ka) + (t3)cos(3ka)}/N2] (4.23)

Now, I consider the limiting case with α=0 i.e, the double occupancy is totally

allowed on the sites and then the Gutzwiller state reduces to that of an ideal Fermi

system:

|FS〉 =

kF∏
kσ

∑
ij

C†iσC
†
j−σe

i(−→ri−−→rj ).
−→
k |vac〉 (4.24)

Calculating the kinetic energy in this case (α=0) for 2D,

D̃c =

kF∏
kx,σ

4{(t1)cos(kxa) + (t2)cos(2kxa) + (t3)cos(3kxa)}(1− δ)2 (4.25)

and for 1D,

D̃c =

kF∏
k,σ

4{(t1)cos(ka) + (t2)cos(2ka) + (t3)cos(3ka)}(1− δ)2 (4.26)

From eqs.(4.22-4.26), one can see that the vanishing conditions for D̃c correspond-

ing to α=0 in 2D are δ →1 and δ 6 δc, where δc depends on the relative magnitudes

of t1, t2 and t3. For t2=t3=0, the value of δc goes to 0.61, which is exactly the same

as the corresponding value of δc obtained for the nearest neighbour t-J model. For

1D t1-t2-t3-J model, Dc vanishes only at δ →1, however, the vanishing conditions for

pure t-J model are retained for t2=t3=0. In this case, the point, where the stiffness

exhibits a jump (δc) appears in the optimal doping region which is much lower than
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that was obtained from the nearest neighbour t-J model. The charge stiffness again

falls with further increase in doping concentration, due to the the presence of large

number of vacancies in the system. The recent experimental observations from some

of the doped correlated systems seem to have a link with this result of ours [214].

The plots of Dc for weakly correlated t1-t2-t3-J model in two dimension, are pre-

sented in Fig.(4.3). The corresponding plots for 1D are given in Fig.(4.4). The values

of t2/t1 and t3/t1 were determined by fitting the tight binding Fermi surfaces to the

experimental results on La2−xSrxCuO4 and Bi2212 [215,216]. The second neighbour

hopping amplitude was found to be of opposite sign with respect to the first neigh-

bour hopping. Here, we have done the calculations for a range of feasible values of

t2 and t3 and presented a result for a few sets of t2/t1 and t3/t1.

Figure 4.3: Dc vs. δ for 2D t1-t2-t3-J model, with α=0; (a)peak at δ ∼0.29 (t2=-
0.53t1,t3=0.24t1) [green line]; (b)peak at δ ∼0.23 (t2=-0.52t1,t3=0.45t1) [blue line];
(c)peak at δ ∼0.19 (t2=-0.6t1,t3=0.56t1) [red line] [in the inset is shown Dc vs. δ for
t2=t3=0; the peak is seen at δ ∼0.61]
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Figure 4.4: Dc vs. δ for 1D t1-t2-t3-J model, with α=0; (a)peak at δ ∼0.02 (t2=-
0.01t1,t3=0.005t1) [red line]; (b)peak at δ ∼0.013 (t2=-0.02t1,t3=0.01t1) [green line];
(c)peak at δ →0 limit (t2=-0.04t1,t3=0.02t1) [blue line]

The Fig.(4.3) shows that the maximum in Dc shifts to the optimal doping region

for range of values of t2/t1 and t3/t1. Again, the peak gradually shifts to further lower

doping concentration for relatively higher magnitudes of second and third neigbour

hopping amplitudes (| t2 | and | t3 |)(see Fig.(4.3)). Here one might notice that the

magnitude of the scaled charge stiffness is greatly reduced with increase in doping,

however, in the previous section it is shown from the analytical calculations, that it

quantitatively goes to zero only at 100% doping concentration, denoting the absence

of any carrier in the system.

Similarly in 1D too, the peak in Dc shifts to very low doping regime as | t2 | and

| t3 | are enhanced and the position of the peak reaches δ →0 limit at t2 ≈-0.04t1

and t3 ≈0.02t1 (see (Fig.(4.4)).
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4.2.2 Comparison with other theoretical and experimental

results

The imaginary conductivity for the electric field applied in the x-direction can be

expressed using the Linear Response Theory as [131,210]:

σ′′xx(ω) =
2e2

Ld~2ω
[

1

2d
〈−T 〉 − P

∑
ν 6=0

| 〈0 | jx | ν〉 |2 (Eν − E0)

(Eν − E0)2 − ~2ω2
] (4.27)

where ‘L’ is the lattice length in any direction of the ‘d’-dimensional lattice. 〈T 〉 is

the kinetic energy expectation value of the operator Tx=-2t
∑

cos kxC
†
kCk and the

paramagnetic current density in x-direction is defined by jx=2t
∑

sin kxC
†
kCk [131].

‘Eν ’ and ‘E0’ are the energy eigen values of the νth state (| ν〉) and the ground state

(| 0〉) respectively [131]. In the very low frequency limit, the imaginary conductivity

is related to the charge stiffness (Dc) by [131,210]:

limω→0ωσ
′′
xx(ω) = (2e2/~2)Dc (4.28)

Using the Kramer’s Kronig transformation, the real conductivity in the low frequency

limit is derived as [131,210]:

σ′xx(ω) =
2πe2

~
[Dδ(~ω) +

1

Ld

∑
ν 6=0

| 〈0 | jx | ν〉 |2 δ((Eν − E0)
2 − ~2ω2)] (4.29)

‘D’ is the Drude weight implying the free acceleration of the electrons or dc con-

ductivity. In the low ω limit, the Drude weight corresponds to the charge stiffness

constant (Dc) (see eqs.(4.27)-(4.28)) [131].

The Drude weight calculated using exact diagonalization for Hubbard model on 4x4

site cluster is shown in Fig.(4.5) [206].
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Figure 4.5: Drude weight vs. doping on 4x4 cluster for U/t=4 using exact diagonal-
ization technique [reproduced from ref.( [206])

From Fig.(4.5), it can be seen that in the very low doping region, the Drude

weight is zero as a result of insulating behaviour of the antiferromagnets. As doping

is increased, dc conductivity increases and again falls with further increase in dop-

ing. This fall is believed to be due to change in the nature of major carriers from

‘vacancies’ to ‘holes’ [206]. The result is very much qualitatively similar in nature to

that of ours (see Fig.(4.3)), which shows that the charge stiffness also shows a peak

around the optimal doping region and a sharp decrease as δ is increased further.

In the present sub-section, I have also presented the comparison between our results

of charge stiffness and effective Coulomb interaction for doped systems. In this con-

text, it must be pointed out that no direct experimental results are available for

effective Coulomb interaction (Veff ) of layered cuprate systems. So, one can extract

Veff from results of optical experiments, using the constitutive equations as given

below. Veff in the long wavelength limit of the antiferromagnetic wave vector (Q=q-

π=0) is related to the imaginary conductivity by the standard constitutive equations
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in the continuum limit [34]:

ε′(ω) = 1− 4πσ′′

ω
(4.30)

Thus, the effective Coulomb interaction.

Veff (ω) =
V0
ε′(ω)

(4.31)

leading to

Veff (ω) =
V0

1− 4πσ′′

ω

(4.32)

and using eq.(4.28) in the very low frequency limit,

Veff (ω) =
V0

1− 4πDc
ω2

(4.33)

with V0 being the bare Coulomb interaction.

ε′ is the real part of the dynamic dielectric function and σ′′ represents the imag-

inary part of the dynamic conductivity, which can be extracted experimentally.

The most of the experiments carried out on the planes of lightly and optimally

doped La2−xSrxCuO4 are at high frequency and at much higher temperatures (>>0K),

which are not suitable for comparison with our results. However, here, a transmit-

ted THz time-domain spectroscopy (THz-TDS) on La2−xSrxCuO4has been consid-

ered [211]. The effective Coulomb interaction is derived from the experimentally ex-

tracted imaginary conductivity using eq.(4.32). It is found that the effective Coulomb

interaction is small and remains almost constant throughout the lower doping region

(in the calculation, we have used the bare onsite Coulomb interaction V0=3.5eV in
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the undoped phase [211]). This result is similar to that of our derived charge stiffness

constant as a function of doping in the under-doped region. Moreover, the eq.(4.33)

shows the possibility of Veff (ω) turning attractive for ω →0; assuming Dc ∝D in the

RPA-like treatment of correlated phase, even with the values of Dc, as allowed by

stability criterion. Thereafter, we are awaiting our theoretical prediction of effective

Coulomb repulsion to be directly tested by experiments in near future.

4.3 Discussion

The generalized charge stiffness constants for 2D and 1D t-J-like models in strong

and weak correlation limits are calculated. A weak dimensional dependence is seen

for coupling between the mobile charge degrees of freedom. Furthermore, our calcu-

lations bring out several important features and conclusions covering various aspects

of correlated fermionic systems in low dimensions. These are discussed below in

detail:

4.3.1 Equivalence of generalized charge stiffness constant

with Drude weight and effective Coulomb interaction

The Dc in 2D remains zero upto δ=δc=0.61 and then exhibits a sharp rise in

value. δc shifts to optimal doping region when t2 and t3 are included. The effective

Drude weight (D) also shows a similar kind of behaviour as shown in the previous

section (see Fig.(4.5)) [206]. In the low doping region, the Drude weight remains

zero, signifying the insulating behaviour of the antiferromagnets. Further, the rise

in the magnitude of ‘D’ with doping indicates the rise in the number of vacancies as

major carriers and if the doping is still increased, one can observe a fall in ‘D’. As

we have already mentioned that, this behaviour owes it’s origin to the change of the
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nature of major carriers from vacancies to mobile holes in the medium doping region

and as the doping is increased further, D falls due to sharp decrease in the number

ofmobile holes [206].

Moreover, in this chapter, I have also tried to establish a connection between our

derived Dc and effective Coulomb interaction in doped antiferromagnetic systems,

within the RPA. The Veff extracted from experimental data shows that the effective

Coulomb interaction remains almost constant in the lower doping region, which is

very similar to the behaviour of our derived charge stiffness in the entire under-doped

regime (see Fig.(4.3)) [211]. The characteristic behaviour of the coupling between the

charge degrees of freedom in the low doping regime is quite physical. In the under-

doped regime, the correlation is very strong with α=1, preventing two carriers from

coming close to each other and thus largely suppressing the itinerant behaviour of the

charges. As a result, the Drude weight is very small and the charges remain far apart

to feel the mutual repulsion. This gives a zero value to charge stiffness, which remains

constant throughout the lower doping region. When the doping concentration is

gradually increased, the charge degrees of freedom become mobile and they can now

feel the repulsive interaction as long as the δ does not become very high so as to

screen the Coulomb repulsion between the mobile carriers.

4.3.2 Effective Coulomb interaction for high density electron

gas

In the medium and the over-doped regime, where the correlation weakens and the

charges become mobile, one can take the continuum approximation and observe a

point of discontinuity in the Lindhard function at q=2kF (‘q’ is the charge ordering

wave vector). Then, using different values of the ordering wave vector ‘q’, it can be

shown that the discontinuity appears at some value of δ in the optimal doping region
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(Fermi momentum being related to δ by eq.(4.16)) [217, 218]. This discontinuity in

the Lindard function also manifests itself in the calculation of dielectric function and

as a result Veff shows a jump at the corresponding value of doping concentration

[217, 218] (see Appendix C). This characterisctic behaviour is very similar to our

result of derived charge stiffness constant (see Fig.4.1), which possibly signifies the

tendency of the formation of charge ordering or charge density waves as the idea put

forward by Overhauser [219]. Hence, the similarity in the behaviour of Dc and Veff

proves the qualitative equivalence between the two, even in the over-doped regime

of these doped itinerant systems. Considering the equivalence, we have drawn a

phase diagram of the doped antiferromagnets in 2D, based on their charge responses

from the t1-t2-t3-J model (see Fig.(4.6)). In the phase diagram, the values of critical

doping concentration (δc) for different values of t3/t1 ratio are shown, taking t2/t1

as parameter. One can also notice that for a particular value of t3/t1, the transition

between the two regions of different charge couplings, takes place at a lower value of

doping concentration for higher values of |t2/t1 |.
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Figure 4.6: Phase diagram showing the critical doping concentration (δc), separat-
ing the regions of charge couplings, as a function of t3/t1 (with t2/t1 ratio as the
parameter). The regions of doping concentration below δc represent the regime very
low charge coupling and above δc, the interaction shows a very high value, followed
by a sharp fall. The different colours are used for different ratios of t2/t1 [α=1 has
been taken].

4.3.3 Comparison between behaviours of Dc and Ds in 2D

The exchange energy contribution to Dc vanishes in the entire doping region (see

eq.(4.12)), resulting in the distinct behaviour of spin and charge stiffness constants.

It has been shown that Dc for two-dimensional lattice with pure t-J model remains

zero throughout the lower doping region and exhibits a sharp rise at δ=δc=0.61.

After this point, Dc immediately falls as doping is increased further (see Fig.(4.1)).

The parameter δc shifts to the optimal doping region when two higher neighbour

hoppings are included (see Fig.(4.3)).

The region of enhanced Coulomb interaction around δc may imply a tendency

towards the formation of a charge density wave, as described in the previous sub-

section [218,219]. Some of the previous theoretical results also confirms the presence

of charge density wave states in the context of single-band t-J-U model [220]. Inter-
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estingly, the spin stiffness constant (Ds) also shows a point of inflection (indicative

of a possible phase transition) at the same δ, where Dc exhibits the sharp rise.

Furthermore, Dc and Ds show almost identical behaviour for δ > δc, i.e. in the over-

doped regime, which is an expected behaviour of Fermi liquid-like phases. In the

under-doped regime however, the behaviour of the two stiffness constants are very

different. Thus it can be concluded that we get the two regions of distinctly different

behaviours. The regions are very likely to characterize (i) an anomalous conducting

phase and (ii) a Fermi liquid-like metallic phase.

4.3.4 Comparison between behaviours of Dc and Ds in 1D

For t-J model, the quantity Dc in 1D vanishes at δ=0 and δ →0 and exhibits a

maximum in the lower doping region. The peak shifts to further lower doping as

the higher neighbour hopping amplitudes are increased and reaches the δ →0 limit

at critical values of t2 and t3(see Figs.(4.2),(4.4)). In the previous chapter, I have

shown that in one dimension, Ds displays a high value at δ →0 limit and falls rapidly

with increase in doping concentration. The drastic fall is immediately followed by

the formation of a peak in the under-doped regime. Hence, we see that Ds and Dc

show completely distinct behaviour only in the very low doping region, whereas they

show a similar trend as doping is slightly increased.

Furthermore, it is also seen that the tendency towards the formation of charge

density wave occurs at much lower doping concentration in 1D than in 2D. Thus

the dimensional dependence of charge stiffness in low dimensional systems is also

established, similar to the spin stiffness case.
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4.3.5 Possibility of pair formation

In some of the recent works, real space pairing has been studied in the framework of

the t-J-like models mostly in the under-doped phase [129,221–223]. In our calculation

we do not get any region of negative charge stiffness, as is expected from the stability

criteria (see eqs.(4.2)-(4.5)). However, eq.(4.33) shows that the effective Coulomb

interaction can be attractive in a range of doping concentration, where charge stiffness

constant has a large non-zero value. This signifies the possibility of superconducting

pair formation in a region where Dc shows a peak, i.e., the region of optimal opting

concentration (see Fig(4.3)).
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Chapter 5

Conclusion

In this final chapter, I am giving brief summary and concluding remarks regarding

all the works described in the previous chapters.

A quantum mechanical, non-perturbative approach has been put forward for de-

riving the generalized spin stiffness constant based on the t-J-like models. Involving

this approach, one can very well derive the effective coupling strengths between the

spin degrees of freedom in the strongly correlated doped itinerant phases of the

antiferromagnets, which had been a challenge to the theoreticians so far. The re-

sults described in the previous chapters bring forward many interesting features and

characteristics of the doped phases and also strongly highlight the dimensional de-

pendence of spin correlations, even in the low dimensional systems.

In the second chapter, I have discussed the detailed formalism for the calculation

of spin-spin coupling in terms of generalized spin stiffness constant (Ds) using the

Gutzwiller projected out state. The results are compared with the effective exchange

constant (Jeff ) extracted from experimental and theoretical results on the layers of

L2−xSrxCuO4 [105, 136]. Based on this comparison the equivalence between Ds and

Jeff is established for doped quantum antiferromagnets. Moreover, the rapid fall in
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Jeff with increase in doping concentration (δ) denotes the weakening of the antifer-

romagnetic interaction and the destruction of the quasi-long range ordering in the

very low δ regime (see Fig.(2.2)). However, the short range correlations persist in

the system upto 100% doping concentration. Furthermore, the plots of Ds against δ

exhibit a shoulder-like structure or a point of inflection at δ ∼0.61, which possibly

represents a point of quantum phase transition (see Fig.2.4). The point of possible

phase transition can denote the transition from a separated hole rich and hole defi-

cient phase, as was obtained by Emery et al [149].

The next chapter deals with the calculation of generalized spin stiffness for one

dimensional t-J model. The results in 1D are compared with the experimental results

on YBa2Cu3O6+x upto 41% doping concentration [165,166,168]. This comparison is

valid in this doping region, since the holes doped in YBa2Cu3O6+x enters into the

chains of compound keeping the valences of the planes unchanged [159–162]. Sim-

ilar to the 2D case, the comparison establishes the equivalence of generalized spin

stiffness and effective exchange constant of one dimensional doped antiferromagnets

too. More interestingly, in 1D, a novel prediction is given regarding the tendency

of the itinerant spins to form a ferromagnetic-like coupling, after the destruction

of original antiferromagnetic ordering in parental phase. This result also gets good

support from experimental results on YBCO [165,166].

In the fourth chapter, following a parallel approach, we have derived the generalized

charge stiffness constant Dc(spin symmetric) corresponding to the doped itinerant

phases. Here, we have separately considered the strongly correlated under-doped

regime and weakly correlated over-doped region. The strongly correlated region is

described with the help of nearest neighbour t-J model with the variational param-

eter α=1 and over-doped regime is studied with the help of t1-t2-t3-J model. The

results are compared with the Drude weights (D) for different doping concentrations,
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obtained from other theoretical results [206]. As described in the previous chapter,

the Drude weight remains zero in the lower doping region, due to suppression of the

motion of carriers as a result of very high Coulomb repulsion. Now, when the doping

is increased, ‘D’ increases and falls again with further increase in δ, as the mobile

holes assume the role of major carriers replacing the vacancies. This nature is similar

to the behaviour of derived Dc shown in Figs.(4.1-4.3).

The results in the under-doped regime are also compared with the results of optical

experiments on the layers of La2−xSrxCuO4 [211]. In the under-doped region, the

carriers are immobile and the Coulomb repulsion remains almost constant, because

the carriers remain far apart to feel the effective interaction due to one another.

As δ is increased, the carriers gain mobility and they can approach the vicinity of

other charges and the effective repulsion becomes high as long as the carriers are

not drastically decreased due to very high doping. Moreover, in a certain range of

doping, one can get attractive Coulomb interaction, even with positive Dc as can be

seen from eq.(4.33). This can be a possible scenario for pair formation in the doped

antiferromagnetic systems.

In the later part, the comparison with the high density electron gas involving the

interacting Lindhard function has lead to the prediction of the tendency of charge

density wave instability in the region where the charge stiffness as well as the Coulomb

repulsion exhibits a sudden rise in magnitude. This charge density wave instability

is similar to the one put forward by Overhauser [219].
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Appendix A

H ′J = Si.Sj − (
1

4
)ninj (A.1)

In terms of fermion operators,

H ′J =
∑
σ

C†i−σCiσC
†
jσCj−σ (A.2)

Thus making use of equation (2.10),

H ′J |ψG〉NDOC =
∑
σ

C†i−σCiσC
†
jσCj−σ

∏
l

(1− n̂l↑n̂l↓)
kF∏
k

∑
i′,j′

ei(ri′−rj′ ).k|i′σ, j′ − σ〉

(A.3)

where ‘i′σ’ and ‘j′ − σ’ denotes fermions at sites ‘i′’ and ‘j′’ with spins ‘σ’ and ‘−σ’

respectively.

H ′J |ψG〉NDOC =
∏
l

(1− n̂l↑n̂l↓)
kF∏
k

∑
i′,j′

δii′δjj′e
i(ri′−rj′ ).k|i′ − σ, j′σ〉 (A.4)

NDOC〈ψG|H ′J |ψG〉NDOC =NDOC 〈ψG|
kF∏
k

ei(ri−rj).k|i− σ, jσ〉 (A.5)

Here ‘n̂l↑n̂l↓’ does not contribute since exchange is not possible between up and down

spins on the same site and i and j are the nearest neighbour occupied sites.

106



Further,

NDOC〈ψG|ψG〉NDOC = 〈vac|
∏
k′

∑
i′,j′,σ

e−i(ri′−rj′ ).k
′
Cj′,−σCi,σ(1−n̂l↓n̂l↑−....)(1−n̂l↑n̂l↓−....)

∏
k′

∑
i′,j′,σ

ei(ri−rj).k|iσ, j − σ〉 (A.6)

Simplifying equations (2.35) and (2.36),

NDOC〈ψG|H ′J |ψG〉NDOC
NDOC〈ψG|ψG〉NDOC

=

kF∏
k

2(1− δ)2 (A.7)

Appendix B

Ht =
∑

<m,n>,σ

(tm,ne
iφσC†mσCnσ + tn,me

−iφσC†nσCmσ (B.1)

Therefore

Ht|ψG〉NDOC =
∑

<m,n>,σ

(tm,ne
iφσC†mσCnσ+tn,me

−iφσC†nσCmσ×(1−n̂1↑n̂1↓−n̂1↑n̂1↓−....)

kF∏
k

∑
i,j

ei(ri−rj).k|iσ, j − σ〉 (B.2)
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= (t)

kF∏
k

∑
i,j,σ

[eiφσ{δi+1,mδi,n|((i+ 1)σ, j − σ〉+ δj+1,mδj,n|iσ, (j + 1)− σ〉}+

e−iφσ{......}]ei(ri−rj).k −
∑
l

kF∏
k

[eiφσ{δl+1,mδl,n|(l+ 1), σ, lσ〉+ δl+1,mδl,n|lσ, (l+ 1)− σ〉

+ e−iφσ{.....}]] (B.3)

where the sum over l is carried out involving all the occupied sites Nl.

Simplifying Eqs. (2.40) and using (2.36) we get,

T (φ 6= 0) = (t)[

kF∏
k,σ

∑
σ

4cos(ka)(1− δ)2cos(φσ)−Nl

kF∏
k,σ

∑
σ

4cos(ka)cos(φσ)/N2]

(B.4)

Appendix C

The longitudinal electronic dynamic dielectric function for a weakly correlated Fermi

liquid-like phase for band electrons can be expressed as [132,217,218]:

ε−1(q +G, q +G′, ω) = 1 + V0(q +G)χ(q +G, q +G′, ω) (C.1)

where G and G′ are Umklapp vectors corresponding to the lattice background and

in 2D [217]
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V0(q +G) =
2πe2

|q +G|
(C.2)

is the bare Coulomb interaction between the electrons, projected in a 2D layer.

At the conventional RPA level χ, the screened dynamic charge susceptibility neglect-

ing the exchange-correlation effects, is given by [217,218]:

χ(q +G, q +G′, ω) =
χ0(q +G, q +G′, ω)

1− V0χ0(q +G, q +G′, ω)
(C.3)

where, χ0(q+G, q+G′,ω) is the free charge dynamic susceptibility given by the Lind-

hard function [218].

Hence, the effective static Coulomb interaction obeys the equation:

1

Veff (q +G′, 0)
= −χ0(q +G, q +G′, 0) +

1

V0(q +G)
(C.4)
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